Carlo Barbieri - University of Surrey

Three-Nucleon Forces in Neutron Rich Isotopes (from O to Ni)

Collaborators:
A. Cipollone, CB, P. Navrátil:

Phys. Rev. Lett. 111, 062501 (2013)
V. Somà, A. Cipollone, CB, P. Navrátil, T. Duguet: Phys. Rev. C 89, $061301 R$ (2014)

Modern realistic nuclear forces

Chiral EFT for nuclear forces:

	2 N forces	3 N forces	4 N forces
$\mathrm{LO} \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right)$			
$\mathrm{NLO} \mathcal{O}\left(\frac{Q^{2}}{\Lambda^{2}}\right)$		——	

Single particle spectrum at $E_{\text {fermi }}$:

[T. Otsuka et al. Phys Rev. Lett 105, 032501 (2010)]

Need at LEAST 3NF!!! ("cannot" do RNB physics without...)
$\mathrm{N}^{2} \operatorname{LO} \mathcal{O}\left(\frac{Q^{3}}{\Lambda^{3}}\right)$
(3NFs arise naturally at N2LO)

Saturation of nuclear matter:
 Phy.s Rev. C 88, 044302 (2013)]

Chiral Nuclear forces - SRG evolved

Faddeev-RPA in two words...

Particle vibration coupling is the main cause driving the distribution of particle strength-a least close to the Fermi surface...

these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]

\rightarrow Analysis of ${ }^{14} \mathrm{O}(\mathrm{d}, \mathrm{t})^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

- Overlap functions and strengths from GF
- Rs independent of asymmetry

Calcium isotopic chain

Ab-initio calculation of the whole Ca : induced and full3NF investigated

\rightarrow induced and full3NF investigated
\rightarrow genuine (N2LO) 3NF needed to reproduce the energy curvature and $\mathrm{S}_{2 n}$
$\rightarrow \mathrm{N}=20$ and $\mathrm{Z}=20$ gaps overestimated!
\rightarrow Full 3NF give a correct trend but over bind!

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
UNUNESIITOE

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
SUNERSEY

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

Lack of deformation due to quenched cross-shell quadrupole excitations
\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
LuNERSIITOF
SURREY

Inversion of $d_{3 / 2}-s_{1 / 2}$ at $N=28$

FIG. 1. (color online) Experimental energies for $1 / 2^{+}$and $3 / 2^{+}$states in odd-K isotopes. Inversion of the nuclear spin is obtained in ${ }^{47,49} \mathrm{~K}$ and reinversion back in ${ }^{51} \mathrm{~K}$. Results are J. Papuga, et al., PRL 110, 172503 (2013)

${ }^{\text {AK }}$ K isotopes

Laser spectroscopy @ ISOLDE

Change in separation described by chiral NN+3NF:

ESPE: "centroid" energies

(Gorkov calculations at $2^{\text {nd }}$ order)

Two-neutron separation energies for meutron rich K isotopes

V. Somà, CB et al., in prep.

Ca and Ni isotopic chains

Calculations based on ramps D, N1, N2:

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $S_{2 n}$ remain but details change

IM-SRG results from H. Hergert
SUNERSEY

Ca and Ni isotopic chains

Calculations based on ramps D, N1, N2:

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $S_{2 n}$ remain but details change

Ca and Ni isotopic chains

Difference of calculated BEs to the experiment for different masses:

\rightarrow In general over binding per nucleon (E / A) appear to stabilize above A~40-50 but more investigations are required.

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculation ?
\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly $1 \mathrm{MeV} / \mathrm{A}$ over binding.
\rightarrow This hints to the need of more repulsion in future generations of chiral realistic forces.

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculation?
\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
\rightarrow This hints to the need of more repulsion in future generations of chiral realistic forces.

Thank you for your attention!!!!

Results for the $N-O-F$ chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

\rightarrow d3/2 raised by genuine 3NF
\rightarrow systematic underestimation of radii

N3LOr(Assr500Mev/c) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces ($2.0 \mathrm{fm}^{-1}$)
N2SE(RR4OOMev/c) chiral 3N interaction evolved $\left(2.0 f \mathrm{~m}^{-1}\right)$

Ca spectral distributions - at 2nid order

neu $\lambda_{\text {SRG }}=2 \Lambda=13,16,16$ RAMP Dpp FULL

Pairing gaps

© Three-point mass differences

$$
\Delta_{n}^{(3)}(A)=\frac{(-1)^{A}}{2}\left[E_{0}^{A+1}-2 E_{0}^{A}+E_{0}^{A-1}\right]
$$

Pairing gaps

Inversion of odd-even staggering

$\xrightarrow{\prime} \rightarrow$ Second order and 3NF necessary to invert the staggering

Ni spectral alistributions - at 2tid order

Collaborators

SUNRRSEY

\qquad cea

TRIUMF
(U) $\mathrm{B}=$

B Universitat de Barcelona
Washington
University in St.Louis
AN Center for Malecular Modeling

A. Cipollone, A. Rios
V. Somà, T. Duguet
A. Carbone
P. Navratil
A. Polls
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen

