

First Nuclear Reaction Experiment with Stored Radioactive ⁵⁶Ni Beam and Internal Hydrogen and Helium Targets

Peter Egelhof GSI Darmstadt, Germany for the EXL Collaboration

2nd Conference on Advances in Radioactive Isotope Science ARIS2014

Tokyo, Japan June 2 – 6, 2014

First Nuclear Reaction Experiment with Stored Radioactive ⁵⁶Ni Beam and Internal Hydrogen and Helium Targets

- I. Introduction
- II. The EXL* Project an Overview
- III. Feasibility Studies and First Experiments with RIB's at the ESR Storage Ring
- IV. Future Perspectives
- V. Conclusions

^{*} EXL: Exotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

I. Introduction: Direct Reactions with Radioactive Beams in Inverse Kinematics

classical method of nuclear spectroscopy:

- \Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p), ...
- ⇒ to investigate exotic nuclei: inverse kinematics
- ⇒ important information at low momentum transfer!

of particular interest:

- ⇒ radial shape of nuclei: skin, halo structures
- ⇒ doubly magic nuclei: ⁵⁶Ni, ¹³²Ni
- ⇒ giant resonances: nuclear compressibility

future perspectives at FAIR:

- ⇒ profit from intensity upgrade (up to 10⁴ !!)
- ⇒ explore new regions of the chart of nuclides and new phenomena
- ⇒ use new and powerful methods:

EXL: direct reactions at internal storage ring target

⇒ high luminosity even for very low momentum transfer measurements

First Experiments at the ESR

¹H - target

Nuclear Physics with Radioactive Beams at FAIR: NUSTAR: NUclear STructure, Astrophysics and Reactions

Experiments with Stored Exotic Nuclei

II. The EXL Project: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Detection systems for:

- Target recoils and gammas (p,α,n,γ)
- Forward ejectiles (p,n)
- Beam-like heavy ions

- Universality: applicable to a wide class of reactions
- High energy resolution and high angular resolution
- Large solid angle acceptance
- Specially dedicated for low q measurements with high luminosity (> 10²⁹ cm⁻² s⁻¹)

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- elastic scattering (p,p), (α,α) , ... nuclear matter distribution ρ (r), skins, halo structures
- inelastic scattering (p,p'), (α,α') , ... deformation parameters, B(E2) values, transition densities, giant resonances
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ...
 single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections
- charge exchange reactions (p,n), (³He,t), (d, ²He), ... Gamow-Teller strength
- knock-out reactions (p,2p), (p,pn), (p,p ⁴He)...
 ground state configurations, nucleon momentum distributions

for almost all cases:

region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer

⇒ complementary to R³B !!!

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - ⇒ halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
- ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins) method: elastic proton scattering ⇒ at low q: high sensitivity to nuclear periphery

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - ⇒ halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
- ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins) method: elastic proton scattering ⇒ at low q; high sensitivity to nuclear periphery
- Investigation of the Giant Monopole Resonance:
 - ⇒ gives access to nuclear compressibility ⇒ key parameters of the EOS
 - ⇒ new collective modes (breathing mode of neutron skin)

method: inelastic α scattering at low \mathbf{q}

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - ⇒ halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
- ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins) method: elastic proton scattering ⇒ at low q: high sensitivity to nuclear periphery
- Investigation of the Giant Monopole Resonance:
 - ⇒ gives access to nuclear compressibility ⇒ key parameters of the EOS
 - ⇒ new collective modes (breathing mode of neutron skin)

method: inelastic α scattering at low \mathbf{q}

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process
- ⇒ electron capture rates in the presupernova evolution (core collaps) method: (³He,t), (d,²He) charge exchange reactions at low q

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies:
 E ≈ 200 ... 740 MeV/u
 (except for transfer reactions)
- required targets: 1,2H, 3,4He
- most important information in region of low momentum transfer
 - ⇒ <u>low recoil</u> energies of recoil particles
 - ⇒ need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high resolution due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of luminosity due to: continuous beam accumulation and recirculation
- low background due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be performed at EXL (except with active targets, but with substantial lower luminosity)

The EXL Recoil and Gamma Array

Si DSSD

 $\Rightarrow \Delta E, x, y$

300 μ m thick, spatial resolution better than 500 μ m in x and y, $\Delta E = 30 \text{ keV (FWHM)}$

<100 μ m thick, spatial resolution better than 100 μ m in x and y, $\Delta E = 30 \text{ keV (FWHM)}$

Si(Li)

 $\Rightarrow \mathbf{E}$

9 mm thick, large area $100 \times 100 \text{ mm}^2$, $\Delta E = 50 \text{ keV (FWHM)}$

CsI crystals

 \Rightarrow E, γ

High efficiency, high resolution, 20 cm thick

III. Feasibility Studies and First Experiments with RIB's at the ESR Storage Ring

specially designed scattering chamber for the ESR:

reactions with ⁵⁸Ni:

proof of principles and feasibility studies:

- UHV capability of detector setup
- background conditions in ESR environment at the internal target
- low energy threshold
- beam and target performance

reactions with ⁵⁶Ni:

⁵⁶Ni: doubly magic nucleus!!

- (p,p) reactions: nuclear matter distribution
- (α,α`) reactions: giant resonances (GMR)
 EOS parameters (nucl. compressibility)
- (³He,t) reactions: Gamow-Teller matrix elements, important for astrophys.

Theorectical Predictions

4 days with $L = 10^{25}$ cm⁻² sec⁻¹ recoil energies: 1 - 45 MeV

14 days with $L = 10^{25}$ cm⁻² sec⁻¹ recoil energies: 200 - 700 keV

needed: large solid angle detectors with low threshold and large dynamic range

Setup at the ESR Storage Ring

UHV Capability of the EXL Silicon Array: Concept: using DSSD's as high vacuum barrier

 Differential pumping proposed to separate (N)ESR vacuum from EXL instrumentation (cabling, FEE, other detectors)

Experimental Concept

Experimental Concept

improve angular resolution

Experimental Concept for the E105 Experiment

Auxilliary vacuum side

Ultra-high vacuum side

Experimental Setup at the ESR

Scattering Chamber mounted at the Internal Target of the ESR

challenge: UHV capable and bakeable DSSD and Si(Li) detectors

FRS: In-Flight Separator & High-Resolution Spectrometer

Preparation of the Stored Radioactive ⁵⁶Ni Beam

FRS: fragmentation of 600 MeV/u ⁵⁸Ni beam

injection to ESR: 7 x 10⁴ 56 Ni per injection

stochastic cooling, bunching and stacking (60 injections):

4.8 x 10⁶ ⁵⁶Ni in the ring

luminosity:

 H_2 target: 2 x 10^{13} cm⁻²

 $\Rightarrow L = 2 \times 10^{26} \text{ cm}^{-2} \text{ sec}^{-1}$ (reduced by aperture)

Beam position [mm]

 $\sigma = 3.78 \text{ mm}$ $x_0 = 0.58 \text{ mm}$

25. 10. 2012:

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

⁵⁶Ni(p,p), E = 400 MeV/u Response of Individual Detectors

⁵⁶Ni(p,p`), E = 400 MeV/u Identification of Inelastic Scattering

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution (raw data!)

M. von Schmid et al., to be published

Investigation of the Giant Monopole Resonance in ⁵⁸Ni

reaction: ⁵⁸Ni on He target

energy: 100 MeV/u

target: 8 X 10¹² /cm³

detectors: DSSD

 $\Theta_{Lab} = 27^{\circ} - 38^{\circ}$

Investigation of the Giant Monopole Resonance in 58Ni

<u>challenge</u>: detect and identify very low energy recoils

Investigation of the Giant Monopole Resonance in ⁵⁸Ni

⁵⁸Ni(α , α), E = 100 MeV/u, Θ_{lab} = 37 deg

Investigation of the Giant Monopole Resonance in 58Ni

⁵⁸Ni(α , α), E = 100 MeV/u, Θ_{lab} = 37 deg

Investigation of the Giant Monopole Resonance in ⁵⁸Ni

comparison with theoretical prediction:

data preliminary

MeV] RM	S-width [MeV]
20.5(5)	2.7(3)
18.4(2)	3.1(1)
$19.2^{+0.4}_{-0.2}$	$4.9^{+1.1}_{-0.3}$
$19.9_{-0.8}^{+0.7}$	_
	20.5(5) 18.4(2) 19.2 ^{+0.4} _{-0.2}

J. C. Zamora et al., to be published

Future Perspectives

short term perspectives:

(α,α`) on ⁵⁶Ni ⇒ investigate ISGMR and ISGDR
 ⇒ investigate the compressibility of nuclear matter

Future Perspectives

short term perspectives:

• (α,α) on ⁵⁶Ni \Rightarrow investigate ISGMR and ISGDR

needs upgrade of detector setup and readout (ASICS)

- (³He,t) on ⁵⁶Ni ⇒ investigate Gamow Teller strength needs upgrade of internal target
- transfer reactions at Cryring (GSI) and TSR@ISOLDE (CERN)

Future Perspectives

long term perspectives (EXL @ FAIR):

for first phase of FAIR: transfer line from SUPER-FRS / CR to the ESR

The E105 Collaboration

S. Bagachi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴, D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹

- ¹ KVI, Groningen
- ² Technische Universität Darmstadt
- ³ ATOMKI, Debrecen
- ⁴ GSI, Darmstadt
- ⁵ Ioffe Physico-Technical Institute, St.Petersburg
- ⁶ Technische Universität München

- ⁷ Institute of Modern Physics, Lanzhou
- ⁸ University of Tsukuba
- ⁹ RIKEN Nishina Center
- ¹⁰ The University of Edinburgh
- ¹¹ Saitama University

V. Conclusions

- For the First Time (World Wide) a Nuclear Reaction Experiment with Stored Radioactive Beams was successfully performed.
- A "Proof of Principle" of the Experimental Concept with UHV capable
 Detectors and Infrastructure around the Internal Target was successful.
- A number of Important Physics Questions can be only addressed with the EXL Technique which is up to date World Wide unique.
- EXL@ESR and EXL@FAIR has a large Potential for Nuclear Structure and Nuclear Astrophysics.