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The contributions of quasiparticle correlations and continuum coupling upon the super- 
fluid properties of neutron-rich Ni isotopes are studied within the modified BCS approx- 
imation at finite temperature. The effect of quasiparticle correlations is included using 
a secondary Bogoliubov transformation explicitly involving the quasiparticle occupation 
numbers at temperature T .  The effect of continuum coupling is taken into account via 
the finite widths of the single-particle resonant states. It is shown that the combina- 
tion of these effects washes out the sharp superfluid-normal phase transition given by 
the standard finite-temperature BCS calculations. It is also found that the two-neutron 
separation energy for 84Ni drops to  zero at T N 0.8 MeV. 

1. INTRODUCTION 

It is well known that there exists a sharp phase transition from the superfluid phase to 
the normal-fluid one in infinite Fermi systems at a critical temperature T, M 0.567A(O), 
where A(0) is the pairing gap at zero temperature T = 0 [l]. In finite Fermi systems like 
nuclei, fluctuations due to the finiteness of the system become large. Several papers took 
into account thermal fluctuations in the pairing field [2-51. Their results showed that, 
although the gap A(T) decreases with increasing temperature, it remains finite even at 
rather high temperature. 

In nuclei close to the drip line, the Fermi level is close to the continuum threshold. 
With increasing T ,  the nucleons are easily promoted into the continuum part of the single- 
particle spectrum, mainly into the single-particle resonant states, which are trapped by 
the centrifugal and/or Coulomb barrier inside the nucleus. The resonant states have a 
continuous energy spreading (finite width) and, therefore, the Pauli blocking, responsible 
for the superfluidity suppression at T # 0, is less effective than for a spectrum formed 
only by bound states. As a result, the critical temperature T, is reduced [6]. 

Recently, an improved treatment of ground-state correlations called the modified RPA 
(MRPA) has been proposed in Ref. [7],  which employs the modified quasiparticles ob- 
tained by a secondary canonical transformation of usual quasiparticles explicitly involving 
the quasiparticle occupation numbers. This approach is applied in this work to study how 
the continuum coupling and the quasiparticle correlations at finite temperature simulta- 
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neously affect the properties of the superfluid-normal phase transition in neutron-rich Ni 
isotopes. 

2. FORMALISM 

We consider a system of fermions described by the particle creation and destruction 
operators, a:, and aj,, in a spherical mean field, where the single-particle orbitals are 
labeled by the total angular-momentum quantum numbers j and m. The pairing correla- 
tions of the system is induced by an attractive two-body force with the pairing constant 
G. Using the canonical Bogoliubov transformation from the particle operators, afm and 
a,-  j m  = (-l)j-muj-.m, to the quasiparticle ones, a:, and aj;, the pairing Hamiltonian 
of this system is transformed into the quasiparticle representation, whose explicit form 
is given in [S,9]. On top of that, following Ref. [7], the quasiparticles are modified by 
the correlations in the quasiparticle ground state according to the following secondary 
canonical transformation between the quasiparticle operators a!,, ajm, and the modified 
ones 6fm, 6j,: 

ti+ i m  = d=aJrn + fiajj;;l , ~ ~ ~ j ; ; l  = J G a j ;  - fiaJm , (1) 

where nj are the quasiparticle occupation numbers of orbitals j in the correlated ground 
state 10): nj = (Olaf,ajmlO) # 0 . Using Eq. (l), the transformation from the original 
particle operators to the modified quasiparticle operators 6jm, 6 j m  becomes 

( 2 )  
- -t  - _  at = U . 6 t  + C . 6 . -  

3m 3 3m 3 3m 7 aj& = U j a j G - U j a j m  > 

with the coefficients iij and ijj related to the conventional Bogoliubov coefficients uj and 
vj as 

We see that the transformation (2) has the same form as the usual Bogoliubov transforma- 
tion, where the coefficients uj  and uj are replaced with u j  and ijj. Therefore, the pairing 
Hamiltonian expressed in terms or the modified quasiparticles operators aim and 6 j m  

has the same form as that of the usual quasiparticle Hamiltonian in [8,9] with (u, w) and 
(ayf,a) replaced with ( U , i j ) ,  and (Gt , i i ) ,  respectively. Hence, the modified BCS (MBCS) 
equations, derived with respect to lo), also has the same form as that of the standard 
BCS equation, namely 

using Eq. (3). The quasiparticle occupation number nj can be determined from the 
backward amplitudes of the renormalized RPA (RRPA) equation by solving it self- 
consistently with Eqs. (4) and ( 5 )  following the procedure discussed in [7,10]. At T # 
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0, the statistical approach is often used. Its major assumption is the replacement of the 
individual compound systems, each with a given intrinsic excitation energy and particle 
number, by the grand canonical ensemble of nuclei in thermal equilibrium. The nuclear 
temperature T and chemical potential X determine the average excitation energy and av- 
erage particle number of the system, respectively. The probability for a quantum system 
to have a given eigenenergy is determined by the density matrix 2, rather than by a pure 
wave function. Solving the MBCS and MRPA equations (obtained using a Hamiltonian 
with monopole pairing) for neutron-rich Ni isotopes at T # 0, we found that the quasipar- 
ticle occupation number nj is very close to the one given by the Fermi-Dirac distribution 
of non-interacting Fermi gas 

where Ej is the quasiparticle energy. Therefore, we approximate n3 = nj(T)  in all further 
numerical calculations. Within this approximation, the MBCS equations (4) and ( 5 )  
become the finite-temperature MBCS (FT-MBCS) equations. 

The extension of the conventional FT-BCS equations to include the contribution of 
the continuum single-particle states has been performed in Ref. [6] .  Using the same 
prescription we can also include the effect of the continuum coupling into the FT-MBCS 
equations (4) and (5) with nj = nj(T): 

where n ( t )  is obtained from nj (T)  replacing the discrete single-particle energy c j  with the 
integration parameter e. In the resonant-continuum BCS equations, the variation of the 
matrix elements of the interaction in the energy region of a resonance is in fact taken into 
account through the continuum level density g(c). The continuum usually contributes 
through a few narrow and well separated resonant states [6]. Therefore one can replace 
in the equations above the continuum level density with [ll] 

where c j  and rj are the energy and the width of the resonance state with angular mo- 
mentum j ,  respectively. In the limit of zero widths, the RHS of Eq. (9) becomes a sum 
of &functions, recovering the level density of the bound spectrum. 



386c N. Dinh Dang, A. Arima/Nucleav Physics A722 (2003) 383c-388c 

3. NUMERICAL RESULTS 

TABLE I. Neutron single-particle states used in calculations for ss-s4Ni isotopes. 

shell state ~j (MeV) r j / 2  (MeV) 
lg7/2 4.229 0.171 

50-82 2f7/2 3.937 1.796 
h / 2  3.334 0.014 
2&/2 1.338 0.489 
3~112 -0.284 
2&/2 -0.80 

28-50 lg9/2 -4.398 
l f 5 / 2  -5.623 
2Pll2 -5.649 
2P3/2 -7.836 

The neutron single-particle states used in the present calculations are shown in Table I. 
They were calculated using a Woods-Saxon potential with the depth Vo = 40 MeV, radius 
Ro = 1.27 fm, and surface thickness a = 0.67 fm. For the spin-orbit interaction we use a 
Woods-Saxon potential with the same values for the radius Ro and surface thickness a,  
but the depth is changed to the value V,, = 21.43 MeV. These parameters are chosen so 
that the obtained single-particle spectrum for 78Ni is similar to that given by the Skyrme 
- HF calculations. The widths of these resonant states are shown in the fourth column 
of the Table I. Their effects on the pairing correlations, both in resonant-continuum BCS 
and MBCS equations, appear through the continuum level density. In order to see these 
effects we perform also a calculation in which the resonant states are treated as quasibound 
states, i.e., replacing in the BCS equations the continuum level density with the Dirac 
&function. These calculations will be quoted below as quasibound BCS and quasibound 
MBCS. The pairing matrix elements are considered equal with the constant G = 0.214 
MeV in all the calculations. This value gives within the quasibound BCS a pairing gap 
of 1.3 MeV for s4Ni at T = 0, as in Ref. [6]. 

The pairing gaps for some Ni isotopes are plotted in Fig. 1 as a function of temperature. 
As in [6], one notices a reduction of the gap due to the finite widths of the resonant 
states. This effect is enhanced in the vicinity of the drip line. Although T, is significantly 
diminished due to the finite widths of the resonant states, the ratio Tc/A(0)  remains close 
to 0.57 in both calculations. The situation changes when together with the continuum 
coupling we introduce the effect of the thermal quasiparticle correlations. As compared to 
the quasibound BCS, the quasibound-modified BCS predicts a slower decrease of pairing 
gap with increasing temperature. The sharp superfluid-normal phase transition occurs at 
a much higher temperature. However, as the thermal quasiparticle correlations decrease 
with increasing the particle number, the slopes of two curves are getting closer. Taking the 
widths of the resonant states into account, the MBCS predicts a slower decrease of the gap 
than that given by the quasibound MBCS as the temperature increases. This is due to the 
fact that, with increasing the temperature, the Pauli blocking becomes less effective due 
to the spreading of the resonant states. The gap obtained within the resonant-continuum 
MBCS remains finite as a long tail extended to T > 2 MeV. It is important to point out 
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that, in contrast to the quasibound-MBCS calculations, the values of the gap obtained 
within the resonant-continuum MBCS never cross zero. In general, we found that by 
introducing the width of the resonances into the MBCS equations the sharp superfluid- 
normal phase transition is washed out for all the isotopes under consideration. 

(c) a4Ni 
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Figure 1. Pairing gaps for as a function of temperature. The dashed, dotted, dash-dotted, 
and solid lines represent the solutions of the quasibound BCS, resonant-continuum BCS, 
quasibound MBCS, and resonant-continuum MBCS, respectively. 

A particular interest in the study of unstable nuclei is the identification of the location 
of the two-neutron drip line. One of the quantities that provide the relevant information 
of the two-neutron drip line is the two-neutron separation energy S2n = E(N - 2 , Z )  - 
& ( N ,  Z ) ,  where I is the total energy of the system. A nucleus with N neutrons is beyond 
the two-neutron drip line if S2% becomes negative. Using this quantity, it has been found 
by the recent continuum HFB calculations in Ref. [la] that the heaviest bound Ni isotope 
is �Ni. 

The two-neutron separation energies Szn calculated within the BCS and MBCS approx- 
imations with continuum coupling via the widths of resonant states are plotted in Fig. 2 
(a) and (b), respectively, against the mass number A for the Ni isotopes under consid- 
eration at several temperatures. It is seen that the decrease of SZn with increasing A is 
smoother within the MBCS approximation than the BCS one, especially with increasing 
temperature. This is a direct consequence of the smooth temperature dependence of the 
pairing gap within the MBCS discussed previously. A particular interesting feature re- 
vealed by this figure is the reduction of two-neutron separation energy with increasing T 
within the MBCS approximation for the isotopes close to the drip line. Thus, the value 
of S2n for s4Ni drops from around 1 MeV at T = 0.3 MeV to almost zero at T = 0.8 N 1 
MeV (See Fig. 2 (b)). This does not happen within the BCS approximation (See Fig. 2 
(a)). This observation suggests that thermal quasiparticle correlations, which are taken 
into account within the MBCS approximation, may cause the two-neutron drip line to be 
reached at s4Ni, i.e. at two mass units earlier, at T = 0.8 N 1 MeV. 

In conclusion we have studied how the thermal quasiparticle fluctuations and the con- 
tinuum coupling affect the pairing correlations in neutron-rich Ni isotopes. The results 
show that the combined effect of the thermal quasiparticle correlations and of continuum 
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Figure 2. Two-neutron separation energies as a function of the mass number A for Ni 
isotopes at temperatures T = 0.3 (thick solid line), 0.5 (dashed line), 0.6 (dotted line), 
0.8 (dash-dotted line), and 1 MeV (thin solid line). (The lines are drawn just to connect 
the points at given values of A in order to make the trend more visible). The results 
obtained within the resonant-continuum BCS and resonant-continuum MBCS are shown 
in (a) and (b), respectively. 

coupling reduces the pairing gap in the low-temperature region and washes out the sharp 
superfluid-normal phase transition found in the standard FT-BCS and FT-HFB calcu- 
lations, which neglect these effects. We also observed that the two-neutron separation 
energy obtained within the MBCS approximation for s4Ni reaches zero at temperature 
around T = 0.8 N 1 MeV. This suggests that the thermal quasiparticle fluctuations may 
cause the drip line to be reached earlier in mass units compared to the zero temperature 
case. 

The authors are grateful to N. Sandulescu for assistance and fruitful discussions. 
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