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The nuclear level density (NLD) and radiative strength function (RSF) are simultaneously described
within a microscopic approach, which takes into account the thermal effects of the exact pairing as well
as the giant resonances within the phonon-damping model. The good agreement between the results
of calculations and experimental data extracted by the Oslo group for 170;171;172Yb isotopes shows the
importance of exact thermal pairing in the description of NLD at low and intermediate excitation energies.
It also invalidates the assumption based on the Brink-Axel hypothesis in the description of the RSF.
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The rapid decrease in level spacing between the excited
states as the excitation energy increases to several MeV
leads to an exponential increase in the level densities and
transition probabilities between the excited levels in the
medium and heavy nuclei. In this condition it is imprac-
tical to deal with an individual state. Instead, it is mean-
ingful and convenient to consider the average properties of
nuclear excitations. Two main quantities, which are often
employed to describe these properties, are the nuclear
level density (NLD) and radiative γ-ray strength function
(RSF). The NLD is defined as the number of excited levels
per unit of excitation energy E�, whereas the RSF is the
average transition probability per γ-ray energy Eγ. The
NLD provides the information on several properties of an
atomic nucleus, namely, the pairing correlations and
nuclear thermodynamic properties such as temperature,
entropy, heat capacity, etc. [1]. The RSF reveals the
characteristics of average nuclear electromagnetic proper-
ties [2]. These two quantities have important contributions
in the study of low-energy nuclear reactions and nuclear
astrophysics such as the calculation of the stellar reaction
rates and the description of nucleosynthesis in stars [3,4].
The study of NLD and RSF has therefore been one of the
most important topics in nuclear structure physics. It
became particularly attractive after the recent develop-
ments of the experimental technique proposed by the Oslo
group (the Oslo method), which is able to simultaneously
extract both NLD and RSF from the particle-γ coincidence
data obtained in the transfer and/or inelastic scattering
reactions [5–7]. These experimental data also serve as a
good testing ground for all the present theoretical
approaches to NLD and RSF.

Although the concepts of NLD and RSF are rather old
[2,8], a unified theory, which can simultaneously and
microscopically describe both the NLD and RSF is still
absent so far. The NLD can be described quite well within
the finite-temperature shell model quantum Monte Carlo
method [9], but this method is time consuming when it is
applied to heavy nuclei. Regarding the γ-strength functions,
which involve giant resonances and the related RSF, they
are beyond the scope of this method. The Hartree-Fock
BCS [10] and Hartree-Fock-Bogolyubov plus combinato-
rial method (HFBC) [11] have provided a global descrip-
tion of NLD and might be considered as the most
microscopic theories for the NLD to date. However, they
both violate the particle number. Consequently, to fit the
experimental data, the NLD predicted by these theories has
to be renormalized by using two parameters, whose values
are extracted from the experimental analysis of the cumu-
lative number of levels and s-wave neutron spacing at the
neutron binding energy [Eq. (9) of Ref. [12]]. For those
nuclei whose experimental data are not available, the
predictive power of these theories is questionable.
Concerning the RSF, there have been few phenomeno-

logical models such as the Kadmenskij-Markushev-Furman
model (KMF) [13] and the generalized Lorentzian (GLO)
[14] model, and only one microscopic approach, which is
the quasiparticle random-phase approximation (QRPA)
[15]. The KMF and GLO use several parameters such as
the energy, cross section, width, centroid of E1, E2, and
M1 resonances, whose values are found by fitting to the
experimental RSF. Within the QRPA, the γ-strength func-
tion is calculated based on the normalized Lorentzian
distribution, from which the resonance width and energy
of the giant dipole resonance (GDR) are extracted. The
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E1-strength functions for 3317 nuclei were extensively
calculated within the QRPA and the results have been
uploaded on the RIPL-3 database [16]. Because the QRPA
calculations were performed only for the E1 strengths,
the results obtained within this model have not been
adjusted to the experimental RSF, which consists of E1
as well as E2, andM1 strengths. Moreover, the predictions
within the KFM and GLO models have shown that, to fit
the experimental data of the RSF at the low Eγ, the width
of the GDR should depend on temperature [13,14]. Since
the GDR width obtained within the QRPA is temperature
independent, the predicted γ-strength functions cannot
describe the experimental data unless a normalization is
applied for data fitting.
It is therefore highly desirable to develop a unified

microscopic theoretical approach, which can simultane-
ously describe both the NLD and RSF. This approach
should employ only the parameters taken over from
previous calculations without introducing new parameters.
It has been shown that thermal pairing is crucial in the
description of the NLD [17,18] and E1-strength function at
the excitation energies below the particle-threshold energy
[19,20]. Moreover, as mentioned above, the temperature
dependence of the GDR width is also important for the
description of the RSF. In the present Letter we propose,
for the very first time, a theoretical approach, which takes
into account both the effects of exact thermal pairing and
temperature-dependent resonance width. Within our app-
roach, thermal pairing is treated based on the eigenvalues
ES, obtained by diagonalizing the pairing Hamiltonian [21]
H ¼ P

kϵkða†þkaþk þ a†−ka−kÞ −G
P

kk0a
†
þka

†
−ka−k0aþk0 at

zero temperature and different numbers of unpaired
particles (seniorities) S. Here, a†�kða�Þ are the creation
(annihilation) operators of a nucleon with angular momen-
tum k (in the deformed basis), projection m�k, and energy
ϵk, the total seniorities S are equal to 0; 2;…;Ω (number of
single-particle levels) for a system with an even number of
particles and 1; 3;…;Ω for a system with an odd number
of particles. These exact eigenvalues are then used to
construct the partition function of the canonical ensemble
(CE) [See, e.g., Eq. (7) of Ref. [22]]. Knowing the partition
function, one can easily calculate all the thermodynamic
quantities such as free energy F, total energy E, entropy S,
heat capacity C, and thermal pairing gapΔ [17,19]. Because
of the limitation by the size of the matrix to be diagon-
alized, the exact solutions of the pairing Hamiltonian are
limited to the levels around the Fermi surface (truncated
levels). To find the total partition function of the whole
system, the exact CE partition function of the truncated
levels is combined with those obtained within the inde-
pendent-particle model (IPM) [23] for the levels beyond
the truncated space, where the independent motion of
nucleons is assumed (that is without pairing). The total
partition function is then given as the sum of the exact CE
partition function for the truncated levels and the IPM

partition function for the levels beyond the truncated
region. The latter is obtained as the difference between
the partition function of the entire single-particle spectrum
(from the bottom of the single-particle potential to the
closed shell N ¼ 126) and that of the truncated levels, for
which exact pairing is taken into account [17,18].
By using the inverse Laplace transformation of the

partition function [1], one obtains the density of state ωðE�Þ
at excitation energy E� as ωðE�Þ ¼ eS=ðT ffiffiffiffiffiffiffiffi

2πC
p Þ [24].

The total NLD ρðE�Þ is obtained from the state density
ωðE�Þ via the relation ρðE�Þ ¼ ωðE�Þ=ðσ ffiffiffiffiffiffi

2π
p Þ [25],

where σ is the spin cutoff parameter. In axially deformed
nuclei, there are two spin cutoff parameters, namely, the
perpendicular σ⊥ ¼ I⊥T=ℏ2 and parallel σ∥ ¼ I∥T=ℏ2

ones, associated with the moments of inertia perpendicular
(I⊥) and parallel (I∥) to the nuclear symmetry axis,
respectively. Based on the limit of rigid body with the
same density distribution as of the nucleus, σ⊥ is empiri-
cally given in the form σ2⊥ ≈ 0.015A5=3T [26], whereas σ∥
is expressed in terms of σ⊥ as σ∥¼σ⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3−2β2Þ=ð3þβ2Þ
p

[27] with β2 and A being the quadrupole deformation
parameter and mass number, respectively. The collective
vibrational and rotational excitations, not included in the
pairing Hamiltonian, also significantly increase the NLD.
These increases are expressed in terms of the vibrational
kvib and rotational krot enhancement factors, defined as the
ratio between the “correct” NLD including all degrees of
freedom and the NLD where the collective vibration and
rotation are, respectively, absent [27–29]. Their explicit
forms are given based on the empirical formulas as
kvib ¼ exp½0.0555A2=3T4=3� [29] and krot ¼ ðσ2⊥ − 1Þ=½1þ
eðE�−UCÞ=DC � þ 1, where E� is the excitation energy
obtained within the exact CE of the pairing Hamiltonian
plus the IPM (EPþ IPM), whereasDC and UC are given as
DC ¼ 1400β22A

−2=3, UC ¼ 120β22A
1=3 [27]. An alternative

treatment of kvib based on the generalized boson partition
function has been reported in Ref. [12], where the coherent
particle-hole (ph) configurations forming the collective
phonons are separated from the incoherent ones to avoid
double counting. The distribution of kvib found in this
way in the region of E� < 30 MeV is quantitatively
equivalent to the empirical formula used in the present
Letter. The final total NLD, including the effects of
vibrational and rotational enhancements, is given as
ρðE�Þ ¼ krotkvibωðE�Þ=ðσ∥

ffiffiffiffiffiffi
2π

p Þ [27,30].
The RSF fXλðEγÞ for the electric (X ¼ E) or magnetic

(X ¼ M) excitations with multipolarity λ is calculated via
the Xλ strength function SXλðEγÞ. In the phenomenological
models, a Lorentzian is used for the strength function
SXλðEγÞ with an approximated resonance width for E1
excitations (the KMF) as a function of T2, whereas the
widths forM1 and E2 excitations take their values at T ¼ 0
as T varies [see Eqs. (14)–(17) in Ref. [6] or Eqs. (9)–(11)
in Ref. [31]]. These assumptions are generally incorrect
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because the giant resonance widths are known to be
temperature dependent, but the T2 dependence of the E1
resonance width, which the KMF borrows from the colli-
sional damping model, is a good approximation only up to
T ∼ 1 MeV (See Fig. 10 in Ref. [32]). Moreover, the effect
of thermal pairing at low T was completely neglected in
these phenomenological models.
In the present work, we calculate the strength function

SXλðEγÞ within the phonon damping model (PDM), where
the temperature-dependent resonance width ΓXλðTÞ is
obtained microscopically, including the effect of nonvan-
ishing thermal pairing [33]. Moreover, instead of using the
approximate pairing as in Ref. [33], we employ the exact
CE pairing mentioned above. The formalism of the PDM
with exact pairing at zero and finite temperatures has been
reported in Ref. [20]. The PDM has also been discussed in a
series of papers, whose most recent review is given in
Sec. 3. 5 of Ref. [32]. The resonance width in the PDM is
the sum of the quantal width ΓQ caused by coupling the
giant resonance excitations to the noncollective ph con-
figurations at zero and nonzero T, and the thermal width ΓT
caused by coupling of giant resonances to the pp and hh
configurations at T ≠ 0 [see Eqs. (1a)–(1c) in Ref. [33]].

The model has two parameters FðλÞ
1 and FðλÞ

2 for the
couplings to ph, and pp (hh) configurations, respectively.

The value of FðλÞ
1 is chosen to reproduce the resonance

width ΓXλðT ¼ 0Þ, whereas FðλÞ
2 is selected at T ¼ 0 so that

the resonance energy EXλ does not changes significantly as
T varies. In numerical calculations in the present work, the
small fluctuation of the resonance peak is neglected by
setting the resonance energies EXλ for E1, M1, and E2
excitations at their corresponding experimental value
extracted at T ¼ 0. The numerical calculations are carried
out for 170;171;172Yb isotopes, whose single-particle spectra
are taken from the axially deformedWoods-Saxon potential
[34]. The quadrupole deformation parameters β2 are 0.295
for 170;171Yb and 0.296 for 172Yb, whereas other parameters
of the Woods-Saxon potential are the same as those
reported in Refs. [17,18]. The values of the pairing
interaction parameter G for neutrons and protons are
chosen so that the exact neutron and proton pairing gaps
obtained at T ¼ 0 reproduce the corresponding experimen-
tal values extracted from the odd-even mass formulas. The
diagonalization of the pairing Hamiltonian is carried out for
12 doubly degenerate single-particle levels with 6 levels
above and 6 levels below the Fermi surface. A set of total
73789 eigenstates for each type of particles is obtained and
employed to construct the exact CE partition function. By
using Eqs. (11) and (12) of Ref. [19], the exact CE chemical
potential and pairing gap are calculated, from which one
obtains the quantities that mimic the “exact” quasiparticle
energies Ek, the coefficients uk and vk of the Bogolyubov
transformation between particles and quasiparticles, as well
as the quasiparticle occupation numbers nk based on their

conventional definitions [see, e.g., Eqs. (3), (4), and (13) of
Ref. [19]]. These quantities are used as inputs in the RSF
calculations within the PDM for the levels with pairing
around the Fermi surface, whereas for the remaining
spectrum, where uk ¼ 1 (0) and vk ¼ 0 (1) for k ¼ p (h)
according to the IPM, one has Ek ¼ jϵk − ϵFj, np ¼ fp and
nh ¼ 1 − fh with ϵF and fk being the Fermi energy and the
single-particle occupation number described by the Fermi-
Dirac distribution at finite T, respectively.
The results of the exact neutron (solid lines) and

proton (dotted lines) gaps as functions of T are plotted
in Figs. 1(a)–1(c). It is seen in these figures that the exact
gaps decrease with increasing T and remain finite up to T
as large as 3 MeV, well above the critical temperature
Tc ∼ 0.57ΔðT ¼ 0Þ, where the pairing gap collapses within
the approximate theories such as the BCS one. A slight
increase in the exact neutron gap at low T < 0.5 MeV is
seen in 171Yb because of the blocking effect from the odd
neutron [35]. Owing to this nonvanishing pairing gap, the
NLDs obtained within the EPþ IPM (solid lines) agree
well with the experimental data for all nuclei considered in
the present Letter as seen in Figs. 1(d)–1(f). These panels
also show that the NLDs obtained within the EPþ IPM
almost coincide with results of the global microscopic
calculations within the HFBC for both negative (dashed
lines) and positive (dotted lines) parities, whose values are
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FIG. 1. Neutron and proton pairing gaps Δ [(a)–(c)] as
functions of T and total level densities ρ [(d)–(f)] as functions
of E� obtained within the EPþ IPM in comparison with
predictions of HFBC calculations for the positive and negative
parities and the experimental data for 170;171;172Yb nuclei.

PRL 118, 022502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

022502-3



taken from the RIPL-3 database [16]. However, as has been
mentioned above, to have a good description of the
experimental data the NLDs obtained within the HFBC
have to be renormalized based on two phenomenological
parameters, spoiling their microscopic nature. Moreover,
since the HFBC was derived based on the partition function
of the incoherent ph states built on top of the HFB single-
particle spectra, it is certainly not able to predict the NLD in
the region of high excitation energy, where the contribu-
tions of the pp, hh, as well as of higher states like 2p2h,
3p3h, etc. become significant. Meanwhile, within the
EPþ IPM, the exact CE partition function is obtained
from the direct diagonalization of the matrix elements of
the Hamiltonian, which consist of all possible couplings
between the ph, pp, and hh states. Therefore, this exact CE
partition, when combined with that of the IPM, is capable
to describe the NLD up to high E� region. The insets
of Figs. 1(d)–1(f), where the NLDs obtained within the
EPþ IPM are compared with those obtained within the
HFBC in the region 10 ≤ E� ≤ 30 MeV, clearly show that
the former are significantly higher than the latter. The merit
of the EPþ IPM is also in the fact that, beyond the Woods-
Saxon mean field, it uses only two parameters, namely, the
monopole pairing strength parameters G for protons and
neutrons, which are adjusted to fit the corresponding
experimental gaps at T ¼ 0.
Shown in Fig. 2 are the RSF [(a)–(c)] and the sum

SPDMðEγÞ of the strength functions SXλðEγÞ calculated
within the PDM for E1, M1, and E2 resonances at
several values of T ≤ 0.7 MeV [(d)–(f)]. These strength
functions have been multiplied by the corresponding
cross sections σðXλÞ at their maxima and normalized
by (2λþ 1), namely, SPDMðEγÞ¼σ½E1ðIÞ�SE1ðIÞðEγÞ=3þ
σ½E1ðIIÞ�SE1ðIIÞðEγÞ=3þσðM1ÞSM1ðEγÞ=3þσðE2ÞSE2ðEγÞ=5,
where E1ðIÞ and E1ðIIÞ correspond to the two components
of the GDR determined from the photoabsorption
experiments [6]. The values of resonance energies EXλ,
their FWHM ΓXλ, and cross sections σðXλÞ at T ¼ 0 for
170;171;172Yb are taken from Table I of Ref. [6]. The GDR
with the largest values of σðXλÞ (Xλ ¼ E1ðIÞ; E1ðIIÞ)
gives the largest contribution to the total strength function
[Figs. 2(d)–2(f)]. The widths of its two components remain
nearly constant at T ≤ 0.4 MeV and increase with T at
T > 0.4 MeV, resulting in a significant increase in the total
RSF at low Eγ < 4MeV as seen in Figs. 2(a)–2(c). The
RSFs obtained within the PDM at T ¼ 0.7 MeV agree well
with the experimental data for all nuclei under consider-
ation. This value of T is higher than that obtained from the
fitting by using the KFMmodel in Ref. [6], which is always
below 0.4 MeV. This result is very important as it invalid-
ates the assumption of the Brink-Axel hypothesis [36],
which states that the GDR built on an excited state should
be the same as that built on the ground state, and based on
which the experimental RSFs were extracted. Based on the
fitting by using the KMFmodel, Ref. [6] has also suggested

that there should appear a two-component pygmy dipole
resonance (PDR) in the region 2.1 < Eγ < 3.5 MeV in
171Yb and 172Yb. Although not reproduced in any micro-
scopic models so far, this two-component PDR was added
on top of the GDR in fitting the experimental RSF in
Ref. [6]. Within the PDM, it has been found in Ref. [20]
that exact pairing enhances the E1 strength function in the
region Eγ < 5 MeV. Including this exact pairing, which
does not vanish at T > Tc, the RSFs, calculated within the
PDM, agree well with the experimental data [thick solid
lines in Figs. 2(a)–2(c)]. In this way, the enhancement of
the experimental RSF at low Eγ, which was suggested to be
caused by the PDR, is explained microscopically by the
effect of exact thermal pairing within the PDM.
In conclusion, we propose, for the very first time, a

microscopic approach, which is able to simultaneously
describe the nuclear level density and radiative γ-ray
strength function. This approach used the exact solutions
of the pairing problem to construct the partition function to
calculate the NLD and thermal pairing gap at finite
temperature. The latter is included in the PDM to calculate
the RSF. The good agreement between the results obtained
within this approach and the experimental data for NLD
and RSF in 170;171;172Yb has shown that exact thermal
pairing is indeed very important for the description of both
NLD and RSF in the low and intermediate region of
excitation and γ-ray energies. Moreover, to have a good
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description of the RSF the microscopic strength function
with the temperature-dependent width for the giant reso-
nances should be used instead of the Brink-Axel hypoth-
esis. The merits of this approach are its microscopic nature
and the absence of parameter fitting at different excitation
and γ-ray energies. It does not consume much computing
time either as the calculation takes less than 5 min even for
a heavy nucleus, and therefore can be performed on a PC.

The numerical calculations were carried out using the
FORTRAN IMSL Library by Visual Numerics on the
RIKEN supercomputer HOKUSAI-GreatWave System.
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