Pseudo-spin Symmetry in Density-Dependent Relativistic Hartree-Fock theory

Long WenHui^{1,2,3} Hiroyuki Sagawa ¹ Meng Jie² Nguyen Van Giai³

Center for Mathematical Sciences, University of Aizu, Japan¹

School of Physics, Peking University, China²

Institut de Physique Nucleaire, Universite Paris-Sud XI, France³

March 20, 2006

OUTLINE

Introduction

- About the PSS
- About the RHF approaches

Theoretical Background

- Density-Dependent Relativistic Hartree-Fock theory
- Pseudo-spin related potentials in DDRHF

Pseudo-spin symmetry in DDRHF

- Single Particle Spectrum
- The PSOP and PCB
- Pseudo-spin orbital splitting

Conclusions

About the PSS

Pseudo-spin Symmetry

- Pseudo-spin Symmetry (PSS)
 - Important features of nuclear spectrum: $\left[\left(n, l, j = l + \frac{1}{2}\right), (n 1, l + 2, j = l + 3/2)\right]$ A. Arima et al.(1969), K. Hecht et al.(1969); A. Bohr et al.(1982), T. Beuschel et al.(1997)
 - Reflecting the relativistic symmetry in Dirac equation: Ginocchio(1997)

$$f_{a}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} iG_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}}(\hat{\mathbf{r}}) \\ -F_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}'}(\hat{\mathbf{r}}) \end{pmatrix} \chi_{\frac{1}{2}}(\tau_{a})$$
(1)

Pseudo-orbit $\tilde{l}_a = l'_a$, pseudo-spin $\tilde{s} = s = \frac{1}{2}$ and then the total angular momentum $j_a = \tilde{l}_a \pm \tilde{s}$.

About the PSS

Pseudo-spin Symmetry

- Pseudo-spin Symmetry (PSS)
 - Important features of nuclear spectrum: $\left[\left(n, l, j = l + \frac{1}{2}\right), (n 1, l + 2, j = l + 3/2)\right]$ A. Arima et al.(1969), K. Hecht et al.(1969); A. Bohr et al.(1982), T. Beuschel et al.(1997)
 - Reflecting the relativistic symmetry in Dirac equation: Ginocchio(1997)

$$f_{a}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} iG_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}}(\hat{\mathbf{r}}) \\ -F_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}'}(\hat{\mathbf{r}}) \end{pmatrix} \chi_{\frac{1}{2}}(\tau_{a})$$
(1)

Pseudo-orbit $\tilde{l}_a = l'_a$, pseudo-spin $\tilde{s} = s = \frac{1}{2}$ and then the total angular momentum $j_a = \tilde{l}_a \pm \tilde{s}$.

- Realization of the PSS: Ginocchio(1997), Meng et al.(1998), Tanabe et al.(1998), Marcos et al.(2001)
 - Cancelation between the scalar and vector potentials

$$\Sigma_S + \Sigma_0 = 0 \tag{2}$$

• Pseudo-centrifugal barrier (PCB) vs pseudo-spin orbital potential (PSOP)

$$V_{\rm PCB} \gg V_{\rm PSO}$$
 (3)

About the PSS

Pseudo-spin Symmetry

- Pseudo-spin Symmetry (PSS)
 - Important features of nuclear spectrum: $\left[\left(n, l, j = l + \frac{1}{2}\right), (n 1, l + 2, j = l + 3/2)\right]$ A. Arima et al.(1969), K. Hecht et al.(1969); A. Bohr et al.(1982), T. Beuschel et al.(1997)
 - Reflecting the relativistic symmetry in Dirac equation: Ginocchio(1997)

$$f_{a}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} iG_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}}(\hat{\mathbf{r}}) \\ -F_{a}(r)\mathscr{Y}_{j_{a}m_{a}}^{l_{a}'}(\hat{\mathbf{r}}) \end{pmatrix} \chi_{\frac{1}{2}}(\tau_{a})$$
(1)

Pseudo-orbit $\tilde{l}_a = l'_a$, pseudo-spin $\tilde{s} = s = \frac{1}{2}$ and then the total angular momentum $j_a = \tilde{l}_a \pm \tilde{s}$.

- Realization of the PSS: Ginocchio(1997), Meng et al.(1998), Tanabe et al.(1998), Marcos et al.(2001)
 - Cancelation between the scalar and vector potentials

$$\Sigma_S + \Sigma_0 = 0 \tag{2}$$

• Pseudo-centrifugal barrier (PCB) vs pseudo-spin orbital potential (PSOP)

$$V_{\rm PCB} \gg V_{\rm PSO}$$
 (3)

- Relativistic mean field (RMF) theory: Walecka (1974), Serot(1986), Reinhard(1989), Ring(1996)
 - Covariant formulation: Origin of the spin-orbit potential and PSS
 - Missing Fock terms

Pseudo-spin symmetry in DDRHF

About the RHF approaches

Progresses in the RHF approach

A. Relativistic Hartree-Fock (RHF) approach: Bouyssy et al.(1985, 1987)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}}(\psi, \sigma, \omega, \rho, \pi, A)$$
(4)

Too large incompressibility, and the nuclei were not bound enough B. RHF approach + σ self-interaction: Barnardos et al.(1993)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}g_2\sigma^3 - \frac{1}{4}g_3\sigma^4 \tag{5}$$

Without recovering the chiral symmetry

C. RHF approach + Zero-range self-interaction: Marcos et al.(2004)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}\beta_{\sigma} \left(\bar{\psi}\psi\right)^{3} - \frac{1}{4}\gamma_{\sigma} \left(\bar{\psi}\psi\right)^{4}$$
(6)

Pauli principle; More complicated

Pseudo-spin symmetry in DDRHF

About the RHF approaches

Progresses in the RHF approach

A. Relativistic Hartree-Fock (RHF) approach: Bouyssy et al.(1985, 1987)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}}(\psi, \sigma, \omega, \rho, \pi, A)$$
(4)

Too large incompressibility, and the nuclei were not bound enough B. RHF approach $+ \sigma$ self-interaction: Barnardos et al.(1993)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}g_2\sigma^3 - \frac{1}{4}g_3\sigma^4 \tag{5}$$

Without recovering the chiral symmetry

C. RHF approach + Zero-range self-interaction: Marcos et al.(2004)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}\beta_{\sigma} \left(\bar{\psi}\psi\right)^{3} - \frac{1}{4}\gamma_{\sigma} \left(\bar{\psi}\psi\right)^{4}$$
(6)

Pauli principle; More complicated

D. Density-dependent Relativistic Hartree-Fock (DDRHF) theory: arXiv: nucl-th/0512086

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} \qquad \qquad \mathbf{g} = \mathbf{g}(\hat{\rho}) \tag{7}$$

a. New effective Lagrangians: PKO1, PKO2, and PKO3

Pseudo-spin symmetry in DDRHF

About the RHF approaches

Progresses in the RHF approach

A. Relativistic Hartree-Fock (RHF) approach: Bouyssy et al.(1985, 1987)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}}(\psi, \sigma, \omega, \rho, \pi, A)$$
(4)

Too large incompressibility, and the nuclei were not bound enough B. RHF approach + σ self-interaction: Barnardos et al.(1993)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}g_2\sigma^3 - \frac{1}{4}g_3\sigma^4 \tag{5}$$

Without recovering the chiral symmetry

C. RHF approach + Zero-range self-interaction: Marcos et al.(2004)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}\beta_{\sigma} \left(\bar{\psi}\psi\right)^{3} - \frac{1}{4}\gamma_{\sigma} \left(\bar{\psi}\psi\right)^{4} \tag{6}$$

Pauli principle; More complicated

D. Density-dependent Relativistic Hartree-Fock (DDRHF) theory: arXiv: nucl-th/0512086

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} \qquad \qquad g = g(\hat{\rho}) \qquad (7)$$

- a. New effective Lagrangians: PKO1, PKO2, and PKO3
- b. Proper descriptions of nuclear matter: Incompressibility K, symmetry energy J, E/A, etc.
- c. Successful quantitative descriptions of finite nuclei: E/A of nuclei, Isotope shift in Pb isotopes, Spin-orbit interaction, etc.

Pseudo-spin symmetry in DDRHF

About the RHF approaches

Progresses in the RHF approach

A. Relativistic Hartree-Fock (RHF) approach: Bouyssy et al.(1985, 1987)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}}(\psi, \sigma, \omega, \rho, \pi, A)$$
(4)

Too large incompressibility, and the nuclei were not bound enough B. RHF approach + σ self-interaction: Barnardos et al.(1993)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}g_2\sigma^3 - \frac{1}{4}g_3\sigma^4 \tag{5}$$

Without recovering the chiral symmetry

C. RHF approach + Zero-range self-interaction: Marcos et al.(2004)

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} - \frac{1}{3}\beta_{\sigma} \left(\bar{\psi}\psi\right)^{3} - \frac{1}{4}\gamma_{\sigma} \left(\bar{\psi}\psi\right)^{4}$$
(6)

Pauli principle; More complicated

D. Density-dependent Relativistic Hartree-Fock (DDRHF) theory: arXiv: nucl-th/0512086

$$\mathscr{L} = \mathscr{L}_{\mathsf{RHF}} \qquad g = g(\hat{\rho}) \qquad (7)$$

- a. New effective Lagrangians: PKO1, PKO2, and PKO3
- b. Proper descriptions of nuclear matter: Incompressibility K, symmetry energy J, E/A, etc.
- c. Successful quantitative descriptions of finite nuclei: E/A of nuclei, Isotope shift in Pb isotopes, Spin-orbit interaction, etc.
- d. Proper isospin and energy dependent behaviors of the effective mass
- e. The role of π -N coupling

Lagrangian and Hamiltonian

• Starting point: Lagrangian density

$$\mathscr{L} = \vec{\psi} \left[i\gamma^{\mu}\partial_{\mu} - M - g_{\sigma}\sigma - \gamma^{\mu} \left(g_{\omega}\omega_{\mu} + g_{\rho}\vec{\tau} \cdot \vec{\rho}_{\mu} + e\frac{1-\tau_{3}}{2}A_{\mu} \right) - \frac{f_{\pi}}{m_{\pi}}\gamma_{5}\gamma^{\mu}\partial_{\mu}\vec{\pi} \cdot \vec{\tau} \right] \psi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} + \frac{1}{2}\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi} - \frac{1}{2}m_{\pi}^{2}\vec{\pi} \cdot \vec{\pi} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu},$$

$$(8)$$

where $\Omega^{\mu\nu} \equiv \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu}$, $\vec{R}^{\mu\nu} \equiv \partial^{\mu}\vec{\rho}^{\nu} - \partial^{\nu}\vec{\rho}^{\mu}$, $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

Lagrangian and Hamiltonian

• Starting point: Lagrangian density

$$\mathscr{L} = \bar{\psi} \left[i\gamma^{\mu}\partial_{\mu} - M - g_{\sigma}\sigma - \gamma^{\mu} \left(g_{\omega}\omega_{\mu} + g_{\rho}\vec{\tau} \cdot \vec{\rho}_{\mu} + e\frac{1-\tau_{3}}{2}A_{\mu} \right) - \frac{f_{\pi}}{m_{\pi}}\gamma_{5}\gamma^{\mu}\partial_{\mu}\vec{\pi} \cdot \vec{\tau} \right] \psi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} + \frac{1}{2}\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi} - \frac{1}{2}m_{\pi}^{2}\vec{\pi} \cdot \vec{\pi} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu},$$

$$(8)$$

where $\Omega^{\mu\nu} \equiv \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu}$, $\vec{R}^{\mu\nu} \equiv \partial^{\mu}\vec{\rho}^{\nu} - \partial^{\nu}\vec{\rho}^{\mu}$, $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

 ${\scriptstyle \bullet}$ Variational basis: Hamiltonian ${\rightarrow}$ Energy functional

$$\mathscr{H} = \bar{\psi} \left(-i\boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + \boldsymbol{M} \right) \psi + \frac{1}{2} \int d^4 x_2 \sum_{i=\sigma,\omega,\rho,\pi,A} \bar{\psi}(x_1) \bar{\psi}(x_2) \Gamma_i D_i \psi(x_2) \psi(x_1), \quad (9)$$

where D_i denote the meson propagator of Yukawa type and the interacting matrix Γ_i read as

$$\Gamma_{\sigma}(1,2) \equiv -g_{\sigma}(1)g_{\sigma}(2), \qquad \Gamma_{\rho}(1,2) \equiv +(g_{\rho}\gamma_{\mu}\vec{\tau})_{1} \cdot (g_{\rho}\gamma^{\mu}\vec{\tau})_{2}, \qquad (10) \\
\Gamma_{\omega}(1,2) \equiv +(g_{\omega}\gamma_{\mu})_{1} (g_{\omega}\gamma_{\mu})_{2}, \qquad \Gamma_{\pi}(1,2) \equiv -\left(\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{5}\gamma_{\mu}\partial^{\mu}\right)_{1} \cdot \left(\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{5}\gamma_{\nu}\partial^{\nu}\right)_{2}, \qquad (11) \\
D_{i}(1,2) = \frac{1}{4\pi} \frac{e^{-m_{i}|\mathbf{x}_{1}-\mathbf{x}_{2}|}}{|\mathbf{x}_{1}-\mathbf{x}_{2}|} \qquad \Gamma_{A}(1,2) \equiv +\frac{e^{2}}{4} (\gamma_{\mu}(1-\tau_{3}))_{1} (\gamma^{\mu}(1-\tau_{3}))_{2}. \qquad (12)$$

Density-dependent meson-nucleon couplings

- Density-dependent meson-nucleon couplings: Brockmann (1992), Lenske (1995), Fuchs (1995)
 - $g_i(\rho_b) = g_i(0)e^{-a_i\xi}, \qquad i = \rho, \pi; \qquad g_i(\rho_b) = g_i(\rho_0)f_i(\xi), \qquad i = \sigma, \omega$ (13)

where $ho_b=\sqrt{j^\mu j_\mu}$, $\xi=
ho_b/
ho_0$, and

$$f_i(\xi) = a_i \frac{1 + b_i(\xi + d_i)^2}{1 + c_i(\xi + d_i)^2}$$
(14)

with five constraint conditions $f_i(1) = 1$, $f_i''(0) = 0$, $f_{\sigma}''(1) = f_{\omega}''(1)$.

Pseudo-spin symmetry in DDRHF

Density-Dependent Relativistic Hartree-Fock theory

Density-dependent meson-nucleon couplings

- Density-dependent meson-nucleon couplings: Brockmann (1992), Lenske (1995), Fuchs (1995)
 - $g_i(\rho_b) = g_i(0)e^{-a_i\xi}, \qquad i = \rho, \pi; \qquad g_i(\rho_b) = g_i(\rho_0)f_i(\xi), \qquad i = \sigma, \omega$ (13)

where $ho_b=\sqrt{j^\mu j_\mu}$, $\xi=
ho_b/
ho_0$, and

$$f_i(\xi) = a_i \frac{1 + b_i(\xi + d_i)^2}{1 + c_i(\xi + d_i)^2}$$
(14)

with five constraint conditions $f_i(1) = 1$, $f_i''(0) = 0$, $f_{\sigma}''(1) = f_{\omega}''(1)$.

• Density-dependence \rightarrow rearrangement term Σ^{μ}_{R}

$$\Sigma \to \Sigma + \gamma_{\mu} \Sigma^{\mu}_{R},$$
 (15)

where $\Sigma_R = \Sigma_{R,(\sigma)} + \Sigma_{R,(\omega)} + \Sigma_{R,(\rho)} + \Sigma_{R,(\pi)}$.

Pseudo-spin symmetry in DDRHF

Density-Dependent Relativistic Hartree-Fock theory

Density-dependent meson-nucleon couplings

- Density-dependent meson-nucleon couplings: Brockmann (1992), Lenske (1995), Fuchs (1995)
 - $g_i(\rho_b) = g_i(0)e^{-a_i\xi}, \qquad i = \rho, \pi; \qquad g_i(\rho_b) = g_i(\rho_0)f_i(\xi), \qquad i = \sigma, \omega$ (13)

where $ho_b=\sqrt{j^\mu j_\mu}$, $\xi=
ho_b/
ho_0$, and

$$f_i(\xi) = a_i \frac{1 + b_i(\xi + d_i)^2}{1 + c_i(\xi + d_i)^2}$$
(14)

with five constraint conditions $f_i(1) = 1$, $f_i''(0) = 0$, $f_{\sigma}''(1) = f_{\omega}''(1)$.

• Density-dependence \rightarrow rearrangement term Σ^{μ}_{R}

$$\Sigma \to \Sigma + \gamma_{\mu} \Sigma_{R}^{\mu},$$
 (15)

where $\Sigma_R = \Sigma_{R,(\sigma)} + \Sigma_{R,(\omega)} + \Sigma_{R,(\rho)} + \Sigma_{R,(\pi)}$.

- Effective interactions in DDRHF (8 free parameters)
 - a. PKO1: $g_{\rho}(0)$ and $f_{\pi}(0)$ are taken as the experimental values: $g_{\rho}(0) = 2.629, f_{\pi}(0) = 1.0$.
 - b. PKO2: Without π -meson, $g_{\rho}(0)$ free to be adjusted
 - c. PKO3: Similar as PKO1, but $g_{\rho}(0)$ free, and a_{π} adjusted by hand

Root mean square deviations from the experimental data

Selected Nuclei(S.N.): ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁵⁸Ni, ⁶⁸Ni, ⁹⁰Zr, ¹¹²Sn, ¹¹⁶Sn, ¹²⁴Sn, ¹³²Sn, ¹⁸²Pb, ¹⁹⁴Pb, ²⁰⁴Pb, ²⁰⁸Pb, ²¹⁴Pb, ²¹⁰Po

Table: RMS deviations Δ from the data for E_b of S.N., Pb and Sn isotopes, S_{2n} , r_c , isotope shift (I.S.) of Pb isotopes and spin-orbit (S.O.) splittings.

		PKO1	PKO2	PKO3	PK1	PKDD	NL3	DD-ME1
	S.N.	1.6177	1.8745	2.0489	1.8825	2.3620	2.2506	2.7561
Δ_{E_b}	Pb	1.8995	1.5797	1.5627	2.0336	2.7007	2.0021	2.1491
	Sn	1.2665	2.3136	1.5260	1.9552	2.4567	1.6551	0.9168
$\Delta_{S_{2n}}$	Pb	0.6831	0.7264	0.7262	0.9192	1.3139	0.9359	1.2191
	Sn	0.6813	1.0203	0.5867	0.7762	1.0629	0.8463	0.7646
Δ_{r_c}	S.N.	0.0269	0.0299	0.0225	0.0204	0.0188	0.0177	0.0163
	Pb	0.0056	0.0071	0.0061	0.0061	0.0060	0.0143	0.0150
$\Delta_{I.S.}$	Pb	0.0760	0.1122	0.0790	0.0784	0.0784	0.0679	0.0567
$\Delta_{S.O.}$		0.4143	0.5639	0.4005	0.5943	0.8097	0.6837	0.5848

PK1 and PKDD: Long(2004); NL3: Lalazissis(1997); DD-ME1: Niksic(2002)

Pseudo-spin symmetry in DDRHF

Density-Dependent Relativistic Hartree-Fock theory

Tow-neutron separation energies of Pb and Sn isotopes

Tow-neutron separation energies of Pb and Sn isotopes

Pseudo-spin symmetry in DDRHF

Pseudo-spin related potentials in DDRHF

Radial Dirac Equations

• Radial Dirac Equations (Fock-related terms X_a and Y_a)

$$E_a G_a(r) = -\left\lfloor \frac{d}{dr} - \frac{\kappa_a}{r} \right\rfloor F_a(r) + \left[\Sigma_S(r) + \Sigma_0(r) \right] G_a(r) + Y_a(r), \tag{16a}$$

$$E_a F_a(r) = + \left[\frac{d}{dr} + \frac{\kappa_a}{r}\right] G_a(r) - \left[2M + \Sigma_S(r) - \Sigma_0(r)\right] F_a(r) + X_a(r)$$
(16b)

Example (*o*-meson)

$$\begin{aligned} X_{a}^{(\sigma)} &= -g_{\sigma} \sum_{b} \delta_{\tau_{a}\tau_{b}} \frac{\hat{j}_{b}^{2}}{4\pi} \sum_{L}^{\prime} \left(C_{j_{a}\frac{1}{2}j_{b}-\frac{1}{2}}^{L0} \right)^{2} \int dr' \left[g_{\sigma} \left(G_{b}G_{a} - F_{b}F_{a} \right) \right]_{r'} R_{LL}(m_{\sigma}; r, r') F_{b}(r) \\ Y_{a}^{(\sigma)} &= +g_{\sigma} \sum_{b} \delta_{\tau_{a}\tau_{b}} \frac{\hat{j}_{b}^{2}}{4\pi} \sum_{L}^{\prime} \left(C_{j_{a}\frac{1}{2}j_{b}-\frac{1}{2}}^{L0} \right)^{2} \int dr' \left[g_{\sigma} \left(G_{b}G_{a} - F_{b}F_{a} \right) \right]_{r'} R_{LL}(m_{\sigma}; r, r') G_{b}(r) \end{aligned}$$

Pseudo-spin symmetry in DDRHF

Pseudo-spin related potentials in DDRHF

Radial Dirac Equations

• Radial Dirac Equations (Fock-related terms X_a and Y_a)

$$E_a G_a(r) = -\left[\frac{d}{dr} - \frac{\kappa_a}{r}\right] F_a(r) + \left[\Sigma_S(r) + \Sigma_0(r)\right] G_a(r) + Y_a(r), \tag{16a}$$

$$E_a F_a(r) = + \left[\frac{d}{dr} + \frac{\kappa_a}{r}\right] G_a(r) - \left[2M + \Sigma_S(r) - \Sigma_0(r)\right] F_a(r) + X_a(r)$$
(16b)

Localization

$$X_{a}(r) = \frac{G_{a}(r)X_{a}(r)}{G_{a}^{2} + F_{a}^{2}}G_{a}(r) + \frac{F_{a}(r)X_{a}(r)}{G_{a}^{2} + F_{a}^{2}}F_{a}(r) \equiv X_{a,G_{a}}(r)G_{a}(r) + X_{a,F_{a}}(r)F_{a}(r), \quad (17a)$$

$$Y_{a}(r) = \frac{G_{a}(r)Y_{a}(r)}{G_{a}^{2} + F_{a}^{2}}G_{a}(r) + \frac{F_{a}(r)Y_{a}(r)}{G_{a}^{2} + F_{a}^{2}}F_{a}(r) \equiv Y_{a,G_{a}}(r)G_{a}(r) + Y_{a,F_{a}}(r)F_{a}(r), \quad (17b)$$

which lead to

$$\left[\frac{d}{dr} - \frac{\kappa_a}{r} - Y_{a,F_a}\right] F_a - \left[\Delta_a(r) - E_a\right] G_a = 0,$$
(18a)

$$\left[\frac{d}{dr} + \frac{\kappa_a}{r} + X_{a,G_a}\right] G_a + \left[V_a(r) - E_a\right] F_a = 0.$$
(18b)

where $\Delta_a \equiv \Delta^D + Y_{a,G_a}$, $V_a \equiv V^D + X_{a,F_a}$ and $\Delta^D \equiv \Sigma_S + \Sigma_0$, $V^D \equiv \Sigma_0 - \Sigma_S - 2M$.

Pseudo-spin related potentials in DDRHF

The PCB and PSOP in DDRHF

• Schrödinger type equation for the lower component F, (subindex *a* is omitted)

$$\frac{d^2}{dr^2}F + V_1\frac{d}{dr}F + (V_{\rm PCB} + V_{\rm PSO} + V_2)F = -(V^D - E)(\Delta^D - E)F$$
(19)

where the PCB V_{PCB} , PSOP V_{PSO} , potentials V_1 and V_2 read as

$$V_{\rm PCB} \equiv \frac{\kappa (1-\kappa)}{r^2},\tag{20a}$$

$$V_{\rm PSO} \equiv \frac{\kappa}{r} \left[\frac{1}{\Delta - E} \frac{d\Delta}{dr} - (X_G + Y_F) \right], \qquad (20b)$$

$$V_1 \equiv (X_G - Y_F) - \frac{1}{\Delta - E} \frac{d\Delta}{dr}, \qquad (20c)$$

$$V_2 \equiv Y_F \frac{1}{\Delta - E} \frac{d\Delta}{dr} - X_G Y_F - \frac{d}{dr} Y_F + Y_G \left(V^D - E \right) + X_F \left(\Delta - E \right).$$
(20d)

Pseudo-spin related potentials in DDRHF

The PCB and PSOP in DDRHF

• Schrödinger type equation for the lower component F, (subindex *a* is omitted)

$$\frac{d^2}{dr^2}F + V_1\frac{d}{dr}F + (V_{\rm PCB} + V_{\rm PSO} + V_2)F = -(V^D - E)(\Delta^D - E)F$$
(19)

where the PCB V_{PCB} , PSOP V_{PSO} , potentials V_1 and V_2 read as

$$V_{\rm PCB} \equiv \frac{\kappa (1-\kappa)}{r^2},\tag{20a}$$

$$V_{\rm PSO} \equiv \frac{\kappa}{r} \left[\frac{1}{\Delta - E} \frac{d\Delta}{dr} - (X_G + Y_F) \right], \qquad (20b)$$

$$V_1 \equiv (X_G - Y_F) - \frac{1}{\Delta - E} \frac{d\Delta}{dr}, \qquad (20c)$$

$$V_2 \equiv Y_F \frac{1}{\Delta - E} \frac{d\Delta}{dr} - X_G Y_F - \frac{d}{dr} Y_F + Y_G \left(V^D - E \right) + X_F \left(\Delta - E \right).$$
(20d)

• Hartree and Fock terms of the PSOP and V_1

$$V_{\rm PSO}^{D} = \frac{\kappa}{r} \frac{1}{\Delta - E} \frac{d\Delta^{D}}{dr}, \qquad V_{\rm PSO}^{E} = \frac{\kappa}{r} \left[\frac{1}{\Delta - E} \frac{dY_{G}}{dr} - (X_{G} + Y_{F}) \right], \qquad (21a)$$
$$V_{1}^{D} = -\frac{1}{\Delta - E} \frac{d\Delta^{D}}{dr}, \qquad V_{1}^{E} = (X_{G} - Y_{F}) - \frac{1}{\Delta - E} \frac{dY_{G}}{dr}. \qquad (21b)$$

 $\underset{\bullet \circ \circ \circ \circ}{\text{Pseudo-spin symmetry in DDRHF}}$

Conclusions

Single Particle Spectrum

Single particle energies and pseudo-spin orbital splitting

Neutron single particle energies of ¹³²Sn calculated by the DDRHF with PKO1 and the RMF with PKDD.

Single particle energies and pseudo-spin orbital splitting

The pseudo-spin orbital splitting $\Delta E_{\text{PSO}} = (E_{\tilde{l}j=\tilde{l}-1/2} - E_{\tilde{l}j=\tilde{l}+1/2})/(2\tilde{l}+1)$ versus the average binding energy $\bar{E}_{\text{PSO}} = (E_{\tilde{l}j=\tilde{l}-1/2} + E_{\tilde{l}j=\tilde{l}+1/2})/2$ for the neutron states in ¹³²Sn. The spin-orbit splitting $\Delta E_{\text{SO}} = (E_{lj=l-1/2} - E_{j=l+1/2})/(2l+1)$ are also given as a function of $\bar{E}_{\text{SO}} = (E_{lj+l-1/2} + E_{lj=l+1/2})/2$.

The PSOP and PCB

Pseudo-spin orbital potential and pseudo-centrifugal barrier

The PCB and PSOP multiplied by the factor $F^2/(V^D - E)$.

 $\mathsf{Introduction}_{\circ\circ}$

Theoretical Background

Pseudo-spin symmetry in DDRHF $_{\circ\circ \bullet \circ \circ}$

Pseudo-spin orbital splitting

Contributions from different terms to pseudo-spin orbital splitting

Equation for the lower component F

$$\frac{1}{V^D - E} \frac{d^2}{dr^2} F + \frac{1}{V^D - E} \left[V_{\text{PCB}} + \hat{\mathcal{V}}^D + \hat{\mathcal{V}}^E \right] F + \Delta^D F = EF$$
(22)

where the operators $\hat{\mathcal{V}}^{D}$ and $\hat{\mathcal{V}}^{E}$ read as,

$$\hat{\mathcal{V}}^D = V_1^D \frac{d}{dr} + V_{\text{PSO}}^D, \qquad \qquad \hat{\mathcal{V}}^E = V_1^E \frac{d}{dr} + V_{\text{PSO}}^E + V_2. \qquad (23)$$

 $\mathsf{Introduction}_{\circ\circ}$

Theoretical Background

Pseudo-spin symmetry in DDRHF

Pseudo-spin orbital splitting

Contributions from different terms to pseudo-spin orbital splitting

Equation for the lower component $\ensuremath{\textit{F}}$

$$\frac{1}{V^D - E} \frac{d^2}{dr^2} F + \frac{1}{V^D - E} \left[V_{\text{PCB}} + \hat{\mathcal{V}}^D + \hat{\mathcal{V}}^E \right] F + \Delta^D F = EF$$
(22)

where the operators $\hat{\mathcal{V}}^{\mathcal{D}}$ and $\hat{\mathcal{V}}^{\mathcal{E}}$ read as,

$$\hat{\mathcal{V}}^D = V_1^D \frac{d}{dr} + V_{\text{PSO}}^D, \qquad \qquad \hat{\mathcal{V}}^E = V_1^E \frac{d}{dr} + V_{\text{PSO}}^E + V_2. \tag{23}$$

Table: The single particle energies E and the contributions from different terms in left hand of Eq. (22) given by the DDRHF with PKO1, in comparison with those by the RMF with PKDD. All units are in MeV.

Model	Orbit	E	<i>F</i> ″	Δ^D	V _{PCB}	$\hat{\mathcal{V}}^D$	$\hat{\mathcal{V}}^{E}$
	$\nu 2 s_{1/2}$	-31.41	18.11	-75.35	9.30	-2.99	19.51
DDRHF	$\nu 1 d_{3/2}$	-34.90	14.87	-79.01	9.54	0.44	19.26
PKO1	$\nu 3s_{1/2}$	-8.33	34.25	-72.00	11.11	0.09	18.22
	$\nu 2d_{3/2}$	-8.66	31.93	-73.96	11.32	3.89	18.17
	$\nu 2 s_{1/2}$	-34.81	21.86	-64.65	11.04	-3.07	
DDRMF	$\nu 1 d_{3/2}$	-38.87	18.17	-68.08	11.41	-0.37	
PKDD	$\nu 3s_{1/2}$	-8.15	40.13	-61.97	13.02	0.67	
	$\nu 2d_{3/2}$	-8.44	37.65	-63.75	13.36	4.30	

Pseudo-spin orbital splitting

Theoretical Background

Pseudo-spin symmetry in DDRHF

Functions $V_{PSO}^E F^2 / (V^D - E)$ and $V_1^E F F' / (V^D - E)$

Pseudo-spin symmetry in DDRHF

Pseudo-spin orbital splitting

Fock-related terms and Dirac wave functions

Pseudo-spin symmetry in DDRHF

Pseudo-spin orbital splitting

Fock-related terms and Dirac wave functions

We might be able to validate the following relations,

$$X(r) \simeq X_0(r)F(r), \qquad Y(r) \simeq Y_0(r)G(r), \qquad (24)$$

where X_0 and Y_0 are supposed to be state-independent potentials due to the Fock terms.

$$\left[\frac{d}{dr} - \frac{\kappa_a}{r}\right] F_a - \left[\Sigma_S + \Sigma_0 + Y_0 - E_a\right] G_a = 0, \qquad (25a)$$

$$\left[\frac{d}{dr} + \frac{\kappa_a}{r}\right] G_a + \left[\Sigma_0 - \Sigma_S - 2M + X_0 - E_a\right] F_a = 0. \qquad (25b)$$

Conclusions

- The PSS in the DDRHF theory was investigated in the doubly magic nucleus ¹³²Sn.
- The PSOP was derived by transforming the coupled radial Dirac equations into the Schrödinger type equation of the lower component properly taking account of the non-local Fock terms.
- The analyses of the single particle spectrum and the pseudo-spin orbital splitting indicate that the PSS is preserved as a good symmetry for the pseudo-spin partner $(\nu 3s_{1/2}, \nu 2d_{3/2})$ of ¹³²Sn in the DDRHF on the same level as RMF.
- Although the Fock terms bring substantial contributions to the PSOP, these contributions to the pseudo-spin orbital splitting, However, are canceled by the other terms due to the non-locality of the exchange potentials.
- The physical mechanism of these cancelations was discussed in relation to the similarity between the non-local terms and the Dirac wave functions.

Effective interaction for DDRHF theory

- Observable: Binding energies of ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁶⁸Ni, ⁹⁰Zr, ¹¹⁶Sn, ¹³²Sn, ¹⁸²Pb, ¹⁹⁴Pb, ²⁰⁸Pb, ²¹⁴Pb and quantities of nuclear matter: (K, J, ρ_{sat})
- Chi-square error:

appendix

Effective interaction

$$\chi^2 = \sum_{i=1}^{N} \frac{\left(y_i^{\mathsf{cal}}(\mathbf{a}) - y_i^{\mathsf{exp}}\right)^2}{\sigma_i^2}$$
(26)

• How to choose 8 free parameters: Contributions of Fock term and role of π -meson

- a. PKO1: $g_{\rho}(0)$ and $f_{\pi}(0)$ are taken as the experimental values: $g_{\rho}(0) = 2.629, f_{\pi}(0) = 1.0$.
- b. PKO2: Without π -meson, $g_{\rho}(0)$ free to be adjusted
- c. PKO3: Similar as PKO1, but $g_{\rho}(0)$ free, and a_{π} adjusted by hand

	m_{σ}	$oldsymbol{g}_{\sigma}$	${oldsymbol{g}}\omega$	$g_ ho(0)$	$f_{\pi}(0)$	$\pmb{a}_ ho$	$oldsymbol{a}_{\pi}$	$ ho_{\mathrm{sat.}}$
PK01	525.7691	8.8332	10.7299	2.6290	1.0000	0.0768	1.2320	0.1520
PKO2	534.4618	8.9206	10.5506	4.0683	_	0.6316	—	0.1510
PKO3	525.6677	8.8956	10.8027	3.8325	1.0000	0.6353	0.9341	0.1530
	a_{σ}	$m{b}_{\sigma}$	C_{σ}	d_{σ}	$oldsymbol{a}_\omega$	$m{b}_\omega$	$oldsymbol{\mathcal{C}}_\omega$	d_ω
PKO1	a_{σ} 1.3845	b_{σ} 1.5132	c_{σ} 2.2966	d_{σ} 0.3810	a_ω 1.4033	b_{ω} 2.0087	<i>c</i> _ω 3.0467	<i>d</i> _ω 0.3308
PKO1 PKO2	$a_{\sigma} \ 1.3845 \ 1.3758$	b_{σ} 1.5132 2.0644	c_{σ} 2.2966 3.0524	$d_{\sigma} \ 0.3810 \ 0.3305$	a_ω 1.4033 1.4514	b_ω 2.0087 3.5744	c_ω 3.0467 5.4784	$d_\omega \ 0.3308 \ 0.2467$

Description of symmetric nuclear matter

	K(MeV)	$ ho_{\rm sat.}({\rm fm^{-3}})$	J(MeV)	E/A(MeV)	$M_S(p_f)/M$	$M^*_{ m NR}(p_f)/M$	$M^*_{ m R}(p_f)/M$
PKO1	250.24	0.1520	34.371	-15.996	0.5900	0.7459	0.7272
PKO2	249.60	0.1510	32.492	-16.027	0.6025	0.7636	0.7447
PKO3	262.47	0.1530	32.987	-16.041	0.5862	0.7416	0.7229
PK1	282.69	0.1482	37.641	-16.268	0.6055	0.6811	0.6642
PK1R	283.67	0.1482	37.831	-16.274	0.6052	0.6812	0.6639
TM1	281.16	0.1452	36.892	-16.263	0.6344	0.7074	0.6900
NL3	271.73	0.1483	37.416	-16.250	0.5950	0.6720	0.6547
PKDD	262.18	0.1500	36.790	-16.267	0.5712	0.6507	0.6334
TW99	240.27	0.1530	32.767	-16.247	0.5549	0.6371	0.6198
DD-ME1	244.76	0.1520	33.069	-16.202	0.5779	0.6574	0.6403
Set e	465.00	0.1484	28.000	-15.750	0.5600	—	—
HFSI	250.00	0.1400	35.000	-15.750	0.6100	—	—
ZRL1	250.00	0.1550	35.000	-16.390	0.5800	—	—

 Set e:
 Bouyssy(1987); HFSI:
 Bernardos(1993); ZRL1:
 Marcos(2004); PK series:
 Long(2004);

 NL3:
 Lalazissis(1997); TM1:
 Sugahara(1994); TW99:
 Typel(1999); DD-ME1:
 Niksic(2002)

Exchange potentials and Dirac wave functions

Dirac wave functions and exchange potentials

Exchange potentials and Dirac wave functions

Dirac wave functions and exchange potentials

