BCS-type theory in canonical ensembles

H. Nakada (Chiba U.)

@ RIKEN symposium (Mar. 20–22, 2006)

Contents:

I. Introduction

II. BCS-type theory in canonical ensembles — formalism

- III. Numerical example in schematic models
- IV. Summary

I. Introduction

What is 'phase transition'?

Note: "phase" ··· usually, semi-classical concept!

Questions:

- (i) what roles conservation laws play?
- (ii) how 'phase transition' develops as the particle-number increases?

Phases in atomic nuclei \leftarrow mean-field (*i.e.* semi-classical) picture

• deformed shape *vs.* spherical shape • superfluid *vs.* normal fluid

signature of 'phase transition' \rightarrow washed out by quantum fluctuations (a part of quant. fluc. \rightarrow restoring symmetry)

Superfluidity (or superconductivity) in finite fermionic systemse.g. atomic nuclei, ultrasmall metallic grains \leftrightarrow breaking of n conservation (U(1) gauge sym.) (n: particle number) \leftarrow BCS or HFB theory

in practice, n conservation should be maintained

 $\begin{cases} \text{sym. breaking} - \text{artifact (due to MF approx.)} \\ \Leftrightarrow \text{ sym. restored via quant. fluc.} \end{cases}$

 \Rightarrow a good example to study

(i) role of conservation laws & (ii) how 'phase transition' develops

in finite systems

II. BCS-type theory in canonical ensembles — formalism

finite-T BCS theory:

trial statistical operator $w_{\text{exact}} = \frac{e^{-H/T}}{\text{Tr}_{C}(e^{-H/T})} \rightarrow w_{\text{G}} = \frac{e^{-H_{0}/T}}{\text{Tr}(e^{-H_{0}/T})}; \quad H_{0} = \sum_{k} \varepsilon_{k} \alpha_{k}^{\dagger} \alpha_{k}$ $\Leftrightarrow \text{Bogoliubov tr.} \quad c_{k}^{\dagger} = u_{k} \alpha_{k}^{\dagger} - v_{k} \alpha_{k}$ free energy $F_{\text{G}} = E_{\text{G}} - TS_{\text{G}}; \quad E_{\text{G}} = \text{Tr}(w_{\text{G}}H), \quad S_{\text{G}} = -\text{Tr}(w_{\text{G}} \ln w_{\text{G}})$ Peierls inequality $F_{\text{G}} \ge F_{\text{exact}} \Rightarrow \text{variation of } F_{\text{G}} \text{ with respect to } (v_{k}, \varepsilon_{k})$ for a given T under $\text{Tr}(w_{\text{G}}N) = n$ \cdots 'GCE-BCS' theory (cf. $\varepsilon_{k} \leftrightarrow f_{k} = 1/(e^{\varepsilon_{k}/T} + 1))$ GCE $\xrightarrow{n \text{ proj.}} CE$ $n \text{ proj. op.} \quad P_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i\varphi(N-n)} d\varphi$

$$w_{\rm C} = \frac{T_n e^{-\omega}}{\operatorname{Tr}(P_n e^{-H_0/T})} \rightarrow F_{\rm C} = E_{\rm C} - TS_{\rm C} \ (\geq F_{\rm exact}); \quad E_{\rm C} = \operatorname{Tr}(w_{\rm C}H), \quad S_{\rm C} = -\operatorname{Tr}(w_{\rm C}\ln w_{\rm C})$$

however, $[P_n, H_0] \neq 0 \rightarrow S_{\rm C}$ not tractable !

further approx. of entropy:Ref.: K. Tanabe & H.N., P.R.C 71, 024314 ('05) $\tilde{F}_{\rm C} = E_{\rm C} - T\tilde{S}_{\rm C};$ $\tilde{S}_{\rm C} = \frac{1}{T} \frac{{\rm Tr}(e^{-H_0/T}H_0P_n)}{{\rm Tr}(e^{-H_0/T}P_n)} + \ln {\rm Tr}(e^{-H_0/T}P_n)$ \leftrightarrow partially commuting P_n & H_0 Peierls inequality $\tilde{F}_{\rm C} \ge F_{\rm C} \ge F_{\rm exact}$ \Rightarrow variation of $\tilde{F}_{\rm C}$ with respect to (v_k, f_k) for a given n & T \cdots 'CE-BCS' theory

variational eq. with respect to v_k :

$$\begin{split} \frac{\delta \tilde{F}_{\mathrm{C}}}{\delta f_{k}} &= 0 \rightarrow \sum_{k'} \varepsilon_{k'} \frac{\partial f_{k'}^{\mathrm{C}}}{\partial f_{k}} = \cdots \qquad \text{(coupled eq.)} \\ \frac{\delta \tilde{F}_{\mathrm{C}}}{\delta v_{k}} &= 0 \rightarrow v_{k}^{2} = \frac{1}{2} \left(1 - \frac{\tilde{\varepsilon}_{k}}{\sqrt{\tilde{\varepsilon}_{k}^{2} + \tilde{\Delta}_{k}^{2}}} \right); \quad \tilde{\Delta}_{k} \equiv \frac{1}{2} \left[(\Delta_{k}^{\varphi} e^{-i\varphi} + \bar{\Delta}_{k}^{\varphi} e^{i\varphi}) \} / \zeta_{k}^{\varphi} \right]_{\varphi}, \quad \tilde{\varepsilon}_{k} = \cdots \neq \varepsilon_{k}; \\ \left[X \right]_{\varphi} &= \frac{\int d\Phi X}{\int d\Phi}, \quad d\Phi = e^{i\varphi(n-\Omega)} \left(\prod_{k>0} \zeta_{k}^{\varphi} \right) d\varphi, \quad w^{\varphi} = \frac{e^{-i\varphi N} e^{-H_{0}/T}}{\mathrm{Tr}(e^{-i\varphi N} e^{-H_{0}/T})}, \\ E^{\varphi} &= \mathrm{Tr}(w^{\varphi}H), \quad \kappa_{k}^{\varphi} = \mathrm{Tr}(w^{\varphi}c_{\bar{k}}c_{k}), \quad \bar{\kappa}_{k}^{\varphi} = \mathrm{Tr}(w^{\varphi}c_{\bar{k}}c_{\bar{k}}^{\dagger}), \\ -\Delta_{k}^{\varphi} &= \frac{\delta E^{\varphi}}{\delta \bar{\kappa}_{k}^{\varphi}}, \quad -\bar{\Delta}_{k}^{\varphi} = \frac{\delta E^{\varphi}}{\delta \kappa_{k}^{\varphi}} \end{split}$$

$$\begin{cases} T = 0 \implies n \text{-proj. BCS at zero } T \\ d\Phi = \delta(\varphi) \, d\varphi \implies \mathbf{GCE}\text{-BCS} \\ \int d\varphi \rightarrow \sum_{\varphi = 0, \pi} \implies \pi_n \text{-proj. BCS} \end{cases}$$

III. Numerical example in schematic models

- s.p. levels \cdots
 - equi-distant with cut-off 2-fold degeneracy $(t_k = t_{ar{k}})$
- half-filled $(n = \Omega)$
- constant pairing

$$H = \sum_{k} t_k N_k - g B^{\dagger} B; \quad B \equiv \sum_{k>0} c_{\bar{k}} c_k$$

• Δ_0 : pairing gap in GCE-BCS at T = 0 $\Delta_0 = 1 \rightarrow g$ (& energy scale)

 \mathbf{QF} (quant. fluc.) = \mathbf{SRF} (sym. restoring fluc.) + \mathbf{AQF} (additional quant. fluc.)

<u>*n*-dep. of</u> T^{cr} ?

IV. Summary

- 1. Canonical-ensemble BCS theory is formulated for the first time. This theory enables us to separate the sym. restoring fluctuation (SRF) from the additional quantum fluctuations (AQF).
- 2. Via numerical studies, we find that

the *n* conservation keeps the phase transition nature, but at higher T^{cr} .

 $\begin{cases} \mathbf{SRF} \rightarrow \mathbf{shifts} \ \mathbf{up} \ T^{\mathrm{cr}} \\ \rightarrow \mathbf{a} \ \mathbf{`phase \ transition' \ picture \ much \ closer \ to \ the \ reality} \\ \mathbf{AQF} \rightarrow \mathbf{washes \ out \ signatures \ of \ transition} \end{cases}$

3. As n grows, both the SRF & the AQF reduce.

The former is realized as gradual decrease of T^{cr} .

4. These studies provide us with a new insight to phase transition in finite systems & roles of conservation laws in it.

The effects of SRF should be taken into account

in future investigations of 'phase transitions' in finite systems.

Ref.: H.N. & K. Tanabe, quant-ph/0603113