Axially symmetric Skyrme-HFB calculation for neutron-rich nuclei

Methods of many-body systems : mean-field theories and beyond

Hiroshi Ooba and Masayuki Matsuo Dept. Phys. Niigata Univ.

Introduction

Number of observed unstable nuclei is about 3000.

Many of them will be deformed !!

• Deformed unstable nuclei are interesting

Rotational band Deformed halo & skin Soft excitation mode

• Possibility of new region of deformation

e.g. Cr isotopes in neutron-rich region may be a new region of deformation.

It is interesting to explore the possibility of static deformation by mean of the mean-field theory.

We adopt axially symmetric Skyrme-HFB theory using the cylindrical coordinate space.

		Deforma tion	Pairing	unstable nuclei (continuum)	
1972	Vautherin et al.	Δ	Δ	×	Deformed Skyrme-HF + BCS
1977	Hoodbhoy et al.	Δ	Δ	×	cylindrical coordinate
1984	Dobaczewski et al.	×	0	0	Skyrme-HFB(spherical)
1986	Bonche et al.	0	Δ	×	3D-cartesian mesh
1994	Gall et al.	0	0	Δ	3D-cartesian mesh HFB(two basis)
2000	Stoitsov et al.	Δ	0	0	Axially symmetric HFB(THO)
2003	Teran et al.	Δ	0	0	Axially symmetric HFB (B- Spline)
	Present work	Δ	0	O⇒©	cylindrical coordinate space HFB(2D mesh)

Purpose of the present work.

• We develop a new code for axially symmetric Skyrme-HFB using the cylindrical coordinate 2D mesh.

• We apply the new code to an analysis of the neutron-rich Cr isotopes.

Theory HFB theory in coordinate space

Total energy \Rightarrow density and pairing density functional.

 $E(\rho(\vec{r}), \kappa(\vec{r})) \qquad \text{Density} \qquad \rho(\vec{r}) = \langle \phi^{\dagger}_{\uparrow}(\vec{r}) \phi_{\downarrow}(\vec{r}) \rangle$ Pairing density $\kappa(\vec{r}) = \langle \phi^{\dagger}_{\uparrow}(\vec{r}) \phi^{\dagger}_{\downarrow}(\vec{r}) \rangle$

Minimize the total energy by variational method. $\delta E(\rho(\vec{r}), \kappa(\vec{r})) = 0$

Coordinate space HFB equation

$$\begin{pmatrix} h(\vec{r}) - \lambda & \Delta(\vec{r}) \\ -\Delta^*(\vec{r}) & -(h(\vec{r}) - \lambda)^* \end{pmatrix} \begin{pmatrix} \psi_m^{(1)}(\vec{r}) \\ \psi_m^{(2)}(\vec{r}) \end{pmatrix} = E_m \begin{pmatrix} \psi_m^{(1)}(\vec{r}) \\ \psi_m^{(2)}(\vec{r}) \end{pmatrix}$$

HFB equation in cylindrical coordinate

Axially symmetric system

2D mesh representation

Diagonalize the Hamiltonian represented by 2D mesh.

Effective interaction

ph-channel Skyrme interaction (SLy4 parameter set) + Coulomb interaction

Comparison with the spherical code (Dobaczewski et al.)

Comparison with the deformed code (Teran et al.)

Application to new deformed region (Cr isotopes).

Quadrupole deformation energy curve of Cr isotopes

Conclusions

• We have developed a new Skyrme-HFB code using cylindrical coodinate 2D mesh.

⇒ Numerical accuracy is checked for ^{22}O and ^{102}Zr .

We have analyzed deformation energy of neutron-rich Cr isotopes.
The quadrupole deformation energy curve is soft and shallow.

2^+ excitation mode

