Pairing correlations in finite Fermi systems

M. Sambataro
Istituto Nazionale di Fisica Nucleare - Sezione di Catania
Italy

Summary and outline

- The reduced BCS model
- Richardson formalism
- evolution of the ground state with increasing pairing strength
- Reformulation of the ground state
- definition of new collective pairs and their evolution
- Analysis in terms of elementary bosons
- mapping procedure
- analysis of the boson ground state
- Analogies with molecular BEC in ultracold Fermi gases

The reduced BCS model

$$
\begin{gathered}
H=\sum_{j=1}^{\Omega} \epsilon_{j} N_{j}-g \sum_{i, j=1}^{\Omega} P_{i}^{\dagger} P_{j} \\
N_{j}=\sum_{\sigma} a_{j \sigma}^{\dagger} a_{j \sigma}, \quad P_{j}^{\dagger}=a_{j+}^{\dagger} a_{j-}^{\dagger}, \quad P_{j}=\left(P_{j}^{\dagger}\right)^{\dagger}
\end{gathered}
$$

Assumptions:

- $\epsilon_{j}=j d \quad$ (equally spaced levels)
- no partial occupation of the levels (only seniority-zero states)
- half-filling
(number of levels $(\Omega)=$ number of particles $(2 N)$)
- N even

Exact solutions

$$
\begin{gathered}
H|\Psi\rangle=E^{(\Psi)}|\Psi\rangle \\
|\Psi\rangle=\prod_{i=1}^{N} B_{i}^{\dagger}|0\rangle, \quad B_{i}^{\dagger}=\sum_{k=1}^{\Omega} \frac{1}{2 \epsilon_{k}-E_{i}} P_{k}^{\dagger} \\
E^{(\Psi)}=\sum_{i=1}^{N} E_{i}
\end{gathered}
$$

Richardson equations

$$
1-\sum_{k=1}^{\Omega} \frac{g}{2 \epsilon_{k}-E_{i}}+\sum_{l(l \neq i)=1}^{N} \frac{2 g}{E_{l}-E_{i}}=0
$$

Exact solutions

- Problem: singularity when $E_{i}=E_{j}$
- Solution: change of variables

$$
E_{2 \lambda-1}=\xi_{\lambda}-i \eta_{\lambda}, \quad E_{2 \lambda}=\xi_{\lambda}+i \eta_{\lambda} \quad(\lambda=1,2, \cdots, N / 2)
$$

with ξ_{λ} real and η_{λ} either pure imaginary or real

- Result:
- the Richardson equations depend only on the real quantities $\xi_{\lambda}, \eta_{\lambda}^{2}$
- at the singularity E_{i} and E_{j} (real) turn into two complex-conjugate pair energies

Pair energies E_{i}

$$
\begin{aligned}
& |\Psi\rangle=\prod_{i=1}^{N} B_{i}^{\dagger}|0\rangle \\
& B_{i}^{\dagger}=\sum_{k=1}^{\Omega} \frac{1}{2 \epsilon_{k}-E_{i}} P_{k}^{\dagger} \\
& (2 N=\Omega=12)
\end{aligned}
$$

Reformulating the ground state

$$
\begin{gathered}
|\Psi\rangle=\prod_{i=1}^{N} B_{i}^{\dagger}|0\rangle=\prod_{\lambda=1}^{N / 2} B_{2 \lambda-1}^{\dagger} B_{2 \lambda}^{\dagger}|0\rangle \\
B_{2 \lambda-1}^{\dagger} B_{2 \lambda}^{\dagger}=\left(\Gamma_{\lambda}^{\dagger}\right)^{2}+\eta_{\lambda}^{2}\left(\Theta_{\lambda}^{\dagger}\right)^{2} \\
\Gamma_{\lambda}^{\dagger}=\sum_{k=1}^{\Omega} \frac{2 \epsilon_{k}-\xi_{\lambda}}{\left(2 \epsilon_{k}-\xi_{\lambda}\right)^{2}+\eta_{\lambda}^{2}} P_{k}^{\dagger}, \quad \Theta_{\lambda}^{\dagger}=\sum_{k=1}^{\Omega} \frac{1}{\left(2 \epsilon_{k}-\xi_{\lambda}\right)^{2}+\eta_{\lambda}^{2}} P_{k}^{\dagger}
\end{gathered}
$$

N.B.: only real quantities are involved in these expressions

Reformulating the ground state

Transformation:

$$
\left\{\Gamma_{\lambda}^{\dagger}, \Theta_{\lambda}^{\dagger}\right\}_{\lambda=1,2, \cdots, N / 2} \longrightarrow\left\{\Pi_{\rho}^{\dagger}\right\}_{\rho=1,2, \cdots, N}
$$

The pairs Π_{ρ}^{\dagger} result from the diagonalization of H in the space

$$
\left\{\Gamma_{\lambda}^{\dagger}|0\rangle, \Theta_{\lambda}^{\dagger}|0\rangle\right\}
$$

They are such that

$$
\langle 0| \Pi_{\rho} \Pi_{\rho^{\prime}}^{\dagger}|0\rangle=\delta_{\rho \rho^{\prime}}, \quad\langle 0| \Pi_{\rho} H \Pi_{\rho^{\prime}}^{\dagger}|0\rangle=\tilde{\epsilon}_{\rho} \delta_{\rho \rho^{\prime}}
$$

Reformulating the ground state

$$
\Pi_{\rho}^{\dagger}=\sum_{\lambda=1}^{N / 2} c(\lambda, \rho) \Gamma_{\lambda}^{\dagger}+\sum_{\lambda=1}^{N / 2} d(\lambda, \rho) \Theta_{\lambda}^{\dagger} \equiv \sum_{k=1}^{2 N} p(k, \rho) P_{k}^{\dagger} \quad(1 \leq \rho \leq N)
$$

The exact ground state results from the diagonalization of H in the space

$$
F=\left\{\Pi_{\rho_{1}}^{\dagger} \Pi_{\rho_{2}}^{\dagger} \cdots \Pi_{\rho_{N}}^{\dagger}|0\rangle \equiv|\rho\rangle\right\}_{1 \leq \rho_{1} \leq \cdots \leq \rho_{N} \leq N}
$$

N.B.:
F is not complete

Occupation probabilities

$$
\begin{aligned}
& 2 N=\Omega=12 \\
& \Pi_{\rho}^{\dagger}=\sum_{k=1}^{12} p(k, \rho) P_{k}^{\dagger} \\
& \quad(1 \leq \rho \leq 6)
\end{aligned}
$$

Energies of the pairs Π_{ρ}^{\dagger}

$\langle 0| \Pi_{\rho} H \Pi_{\rho^{\prime}}^{\dagger}|0\rangle=\tilde{\epsilon}_{\rho} \delta_{\rho \rho^{\prime}}$

Structure of the ground state

$$
\begin{aligned}
& R(\rho)=\left|\frac{1}{\sqrt{\mathcal{N}_{\rho}}}\langle\Psi \mid \rho\rangle\right| \\
& |\rho\rangle=\Pi_{\rho_{1}}^{\dagger} \Pi_{\rho_{2}}^{\dagger} \cdots \Pi_{\rho_{6}}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\left|\rho_{1}\right\rangle=\Pi_{1}^{\dagger} \Pi_{2}^{\dagger} \Pi_{3}^{\dagger} \Pi_{4}^{\dagger} \Pi_{5}^{\dagger} \Pi_{6}^{\dagger}|0\rangle, \quad\left|\rho_{2}\right\rangle=\left(\Pi_{1}^{\dagger}\right)^{6}|0\rangle
$$

Correlation energy

Mapping

- Fermion space

$$
\begin{gathered}
\Pi_{k}^{\dagger} \\
F=\left\{\Pi_{k}^{\dagger}, \Pi_{k^{\prime}}^{\dagger}\right]=0, \quad\left[\Pi_{k}, \Pi_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}+\cdots \\
\left.F=\Pi_{k_{1}}^{\dagger} \cdots \Pi_{k_{N}}^{\dagger}|0\rangle\right\}_{1 \leq k_{1} \leq \cdots \leq k_{N} \leq N}
\end{gathered}
$$

- Boson space

$$
\begin{gathered}
{\left[b_{k}^{\dagger}, b_{k^{\prime}}^{\dagger}\right]=0, \quad b_{k}^{\dagger}} \\
B=\left\{b_{k}, b_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}} \\
\left.\left.k_{k_{1}}^{\dagger} b_{k_{2}}^{\dagger} \cdots b_{k_{N}}^{\dagger} \mid 0\right)\right\}_{1 \leq k_{1} \leq \cdots \leq k_{N} \leq N}
\end{gathered}
$$

Mapping

- Transformation operator

$$
\begin{aligned}
V & \left.\equiv \mid 0)\langle 0|+\sum_{k_{1}}\left|\widetilde{1, k_{1}}\right\rangle\left\langle\widetilde{1, k_{1}}\right|+\sum_{k_{2}} \mid \widetilde{2, k_{2}}\right)\left\langle\widetilde{2, k_{2}}\right|+\cdots \\
& \left.=\sum_{n, k_{n}} \mid n, k_{n}\right)\left\langle\widetilde{n, k_{n}}\right|
\end{aligned}
$$

- Boson image of a fermion operator T

$$
\left.T_{B} \equiv V T V^{\dagger}=\sum_{n, k_{n}} \sum_{n^{\prime}, k_{n^{\prime}}} \mid \widetilde{n, k_{n}}\right)\left\langle\widetilde{n, k_{n}}\right| T\left|\widetilde{n^{\prime}, k_{n^{\prime}}}\right\rangle\left(\widetilde{n^{\prime}, k_{n^{\prime}} \mid}\right.
$$

- Projection operator

$$
\mid 0)\left(0 \mid=1-\sum_{k} b_{k}^{\dagger} b_{k}+O(4)\right.
$$

- General property of T_{B}
$\left(\widetilde{n, k}\left|T_{B}\right| \widetilde{n^{\prime}, k^{\prime}}\right)=\widetilde{\langle n, k}|T| \widetilde{\left.n^{\prime}, k^{\prime}\right\rangle}$

Mapping (results)

- Boson Hamiltonian

$$
H_{B}=\sum_{i} \tilde{\epsilon}_{i} b_{i}^{\dagger} b_{i}+V_{B}
$$

where:

- $\tilde{\epsilon}_{i}$ is the energy of the pair Π_{i}^{\dagger}
- V_{B} is an interaction term which contains up to N -body boson operators
- Boson ground state

$$
\begin{aligned}
\mid \Psi) & \left.=\sum_{i} c_{i} \mid i\right) \\
& \left.\left.=\sum_{i} c_{i} \frac{1}{\sqrt{N_{i}}} b_{i_{1}}^{\dagger} b_{i_{2}}^{\dagger} \cdots b_{i_{N}}^{\dagger} \right\rvert\, 0\right)
\end{aligned}
$$

Structure of the boson ground state

$$
\begin{gathered}
\left.\mid \Psi)=\sum_{i} c_{i} \mid i\right) \\
\left(\sum_{i} c_{i}^{2}=1\right)
\end{gathered}
$$

$$
\left.\left.\left.\mid 1)=b_{1}^{\dagger} b_{2}^{\dagger} b_{3}^{\dagger} b_{4}^{\dagger} b_{5}^{\dagger} b_{6}^{\dagger} \mid 0\right), \quad \mid 2\right) \left.=\frac{1}{\sqrt{\mathcal{N}}}\left(b_{1}^{\dagger}\right)^{6} \right\rvert\, 0\right)
$$

One-body boson density

$$
n(i, j)=\left(\Psi\left|b_{i}^{\dagger} b_{j}\right| \Psi\right)
$$

$$
\left(\Psi\left|\beta_{k}^{\dagger} \beta_{k^{\prime}}\right| \Psi\right)=n_{k} \delta_{k k^{\prime}} \quad \beta_{k}^{\dagger}=\sum_{i} \phi_{i k} b_{i}^{\dagger} \quad\left(\sum_{k} n_{k}=N\right)
$$

Summary and outline

- The reduced BCS model
- Richardson formalism
- evolution of the ground state with increasing pairing strength
- Reformulation of the ground state
- definition of new collective pairs and their evolution
- Analysis in terms of elementary bosons
- mapping procedure
- analysis of the boson ground state
- Analogies with molecular BEC in ultracold Fermi gases

