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Triaxiality of nucleus — A long standing issue

triaxial body
• Davydov-Filippov model

• CoulEx. sum rule method:

〈[[E2× E2]× E2]0〉 ∝ cos 3γ

• Eex or M1/E2 staggering

at high-spins in odd or odd-odd nuclei

recently

•Wobbling band !

in 161,163,165,167Lu nuclei
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Fig. 3. Partial level scheme of 163Lu showing the four firmly
established TSD bands.

Table 1. Labelling of the lowest Nilsson orbitals for neutrons.

Nilsson orbital α = +1/2 α = −1/2

[642]5/2+ A B
[651]3/2+ C D
[523]5/2− E F
[521]3/2− G H

[404]7/2+, [514]9/2− and [523]7/2−. At higher-spin con-
figurations involving one of the lowest protons coupled to
two low-lying quasineutrons are expected. The labelling
of the Nilsson orbitals for neutrons and protons is shown
in tables 1 and 2, respectively.

Many of the lowest bands predicted by UC have
been established experimentally in the previous experi-
ment [18]. In fig. 2 these bands are labelled with Nilsson
quantum numbers at low spin. Two new coupled bands,
X2 and X3, have been observed in the present experi-
ment as well as one single band, X5. All the decay-out
transitions of the previously known ND bands have been
confirmed in the present experiment. Due to strong mix-

Table 2. Labelling of the lowest Nilsson orbitals for protons.

Nilsson orbital α = +1/2 α = −1/2

[411]1/2+ a b
[404]7/2+ c d
[402]5/2+ k l
[523]7/2− e f
[514]9/2− g h
[660]1/2+ m
[541]1/2− n

ing between levels especially in the bands now labelled
X3 and X4, some of the levels have been rearranged com-
pared to ref. [18]. It should be noted that in ref. [18] the
[411]1/2+ band was extended to up to spin 59/2h̄, whereas
in the present level scheme the [411]1/2+ band ends at spin
31/2h̄. The top of [411]1/2+ in ref. [18] now comprises a
part of the new band X3 from spin 39/2h̄ to 51/2h̄ in ad-
dition to the short band with the three levels 55/2, 59/2
and 63/2h̄ decaying into X3 at spin 51/2h̄ through the
823.2 keV γ-ray. The top part of X3 from spin 45/2h̄ in
the positive-signature partner and from spin 55/2h̄ in the
negative-signature partner are new extensions. The low-
est part of the band X3 was also seen in the previous
experiment. Levels now placed in the positive-signature
partner up to spin 41/2h̄ as well as the levels up to spin
31/2h̄ in the negative-signature partner belonged to the
band labelled X2 in ref. [18]. In some of the other previ-
ously known bands smaller changes have been made at the
highest spins and a few new transitions have been added.

In figs. 4 and 5 the excitation energy relative to a
rigid-rotor reference of negative- and positive-parity ND
bands, respectively, is shown, and for each band the pro-
posed configuration is indicated. The alignment of the
same bands is shown in figs. 6 and 7 as a function of
rotational frequency using a reference Iref = J0ω + J1ω

3

with J0 = 30h̄2 MeV−1 and J1 = 40h̄4 MeV−3.

4.1.1 The bands [402]5/2+ and [411]1/2+

The bands [402]5/2+ and [411]1/2+ were also observed
in the previous experiment and the present data set con-
firms the earlier observations [18] and the configuration
assignments of these bands.

4.1.2 The bands [404]7/2+ and [523]7/2−

In the [404]7/2+ band the first neutron crossing, AB, is ob-
served at h̄ω ∼ 0.26 MeV, see fig. 7, and at h̄ω ∼ 0.32 MeV
another crossing occurs matching the frequency of the BC
crossing. However, the BC crossing should be blocked af-
ter the AB alignment, and it was therefore proposed in
ref. [18] that a change of character takes place in the
[404]7/2+ band into [523]7/2−⊗AEBC after the appar-
ent AB crossing. That is, the two signature partners are
built on the e and f protons, respectively, together with the
quasineutrons AE going into AEBC at h̄ω ∼ 0.32 MeV,
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B(E2)out/B(E2)in
sensitive to

triaxiality γ !
(Hamamoto-Hagemann)



B(E2)out/B(E2)in in the Rotor Model

Model parameters

Energy spectra
moments of inertia
Jx,Jy,Jz

(more in hs.p. if a particle coupled)

B(E2)’s
two Q-moments
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tan γ = −
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2 Q22
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(Lund convention of sign)

c.f. if Jy = Jz

B(E2)out/B(E2)in ∝ tan2 (γ + 30◦)

Particle-Rotor Model Cal. by

Hamamoto-Hagemann, PRC67, 014319 (2003).

Jx : Jy : Jz = 145 : 135 : 50
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Microscopic cranked mean-field plus RPA (1)

Rotor Model

good correspondence

Mean-field parameters
Nilsson potential: (ε2, γ, ε4,...,∆n,p) determined selfconsistently

(Strutinsky calculations)

ND’s

TSD

γ ≈ 20◦
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Matsuzaki-Shimizu-Matsuyanagi,
PRC65, 041303(R) (2002).

ε2 = 0.43, ε4 = 0.0, ∆n,p = 0.3 MeV

163Lu B(E2)out/B(E2)in
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γ = 20◦

5-major shells
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Microscopic cranked mean-field plus RPA (2)

Difference in the definition of γ

• “γ(pot)” in Nilsson potential

v.s.

• “γ(dens)”= tan−1
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ε2 = 0.43

γ(pot)

γ
(d

en
s)

Good correspondence to Rotor Model
by changing γ(pot)= 20◦ to 30◦ !

163Lu B(E2)out/B(E2)in
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Parametrization of triaxial deformation (1)

• γ(dens) density distribution

γ(dens) = tan−1
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, 〈O〉 =
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• γ(shape) potential shape (geometry) ρLD : liquid-drop like sharp-cutoff density

γ(shape) = tan−1
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ρ0 in Σ
0 out of Σ

Σ : nuclear
surface

where the nuclear surface Σ is defined by V (r; def.) = const. (e.g. 1
2
V0)

Σ : r = R(Ω) (neglecting velocity-dependent part)

nuclear selfconsistency
γ(dens) ≈ γ(shape)

(in good approximation)

γ(dens)/γ(shape)163Lu

γ(shape)

Nilsson, ε2 = 0.43, ε4 = 0.0
∆n,p = 0.3 MeV

Woods-Saxon, ε2 = 0.42, ε4 = 0.034
∆n,p = 0.3 MeV



Parametrization of triaxial deformation (2)

• γ(pot) parametrization in each mean-field potential

Nilsson: (ε2, γ, ε4, ...) defined in stretched coordinate (r′, Ω′) by (x′ =
√

ωx/ω0 x, ...)
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Woods-Saxon: (β2, γ, β4, ...)

V (r) = V0[1 + exp(DΣ(r)/a)]−1, DΣ(r) = distance between r and surface Σ

Σ : R(Ω) = Rv

(

1 + β2[cos γ Y20(Ω)− sin γ 1√
2
(Y22(Ω) + Y2−2(Ω))] + β4 × · · ·

)

γ(pot)

γ
(s

h
ap

e)

Nilsson

ε2 = 0.2
ε2 = 0.4
ε2 = 0.6

γ(pot)

γ
(s

h
ap

e)

Woods-Saxon



Parametrization of triaxial deformation (3)
(Harmonic oscillator potential : Nilsson with ε4 = 0)
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M
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zz

2
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surface Σ:
x2

a2
+
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b2
+
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c2
= 1 : Ellipsoid

here a : b : c = ω−1
x : ω−1

y : ω−1
z

parametrization of Nilsson pot. (ε2, γ)
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c.f. For the spherical H.O. plus Q ·Q force (usually restricted in one-two major shells)
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(Introducing δ2 corresponding to ε2) if δ2, |γ| � 1, γ(shape) ≈ (1− 2δ2) γ(dens)

Selfconsistency, γ(shape)≈γ(dens), is severely broken!



Triaxiality suggested by experimental B(E2)’s in 163Lu

γ-dependence in Rotor Model Microscopic RPA cal. (Talk by T. Shoji)

B(E2)in ≈ 15
32π〈Σ(y2 − z2)〉2 ∝ cos2(γ + 30◦), Here γ is γ(dens)

B(E2)in/B(E2)out ≈
2

I
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wy = 1/Jz − 1/Jx

wz = 1/Jy − 1/Jx

Can we understand B(E2)’s by changing γ based on Microscopic RPA cal.?

Woods-Saxon RPA cal. using γ(pot)=18◦(γ(dens)=11.5◦)
An example: changing γ(dens)=12◦ to 22◦ linearly according to the formula above,

h̄ωrot [MeV]

B(E2)out/B(E2)in

RPA cal. γ(dens)=11.5◦

h̄ωrot [MeV]

B(E2)in [eb2]

Changing by hand!

γ(dens)=12◦ at h̄ωrot = 0.2
to 22◦ at h̄ωrot = 0.5



Summary

• B(E2)out/B(E2)in of wobbling band is sensitive to the triaxiality γ,
in both Rotor Model and Microscopic RPA calculation.

can be used to probe intrinsic triaxial deformation!

• Different definitions of the triaxiality parameter γ
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γ(dens) ←− density distribution
γ(shape) ←− shape of potential
γ(pot) ←− parametrization in each potential

e.g. γ(dens) = tan−1
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〈Q20〉
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γ(dens)≈γ(shape) in good approximation (nuclear selfconsistency),
but γ(pot) is quite different especially for large ε2 deformation (Nilsson/Woods-Saxon).

e.g. γ(dens)≈γ(shape)≈ 20◦ γ(pot)≈ 30◦ at ε2 ≈ 0.4 (TSD) !

• Suggestion by experimental data of B(E2)’s in 163Lu
Almost constant B(E2)out/B(E2)in and decreasing B(E2)in can be understood

by increasing γ(dens) by about 10◦ (e.g. 12◦ to 22◦) in the observed spin range.
BUT Strutinsky calculation gives almost const. and small γ(dens) (e.g. 11◦ to 13◦)!!

NEED MORE STUDY!!


