Comment on
 Parametrizations of Nuclear Mean-Field for Triaxial Deformation

M. Matsuzaki, K. Matsuyanagi and $Y R S$

Triaxiality of nucleus - A long standing issue

- Davydov-Filippov model

- CoulEx. sum rule method:

$$
\left\langle[[E 2 \times E 2] \times E 2]_{0}\right\rangle \propto \cos 3 \gamma
$$

- $E_{\text {ex }}$ or $M 1 / E 2$ staggering
at high-spins in odd or odd-odd nuclei
recently
- Wobbling band !

$$
\text { in } 161,163,165,167 \mathrm{Lu} \text { nuclei }
$$

$B(E 2)_{\text {out }} / \boldsymbol{B}(\boldsymbol{E} 2)_{\text {in }}$ in the Rotor Model

Model parameters
Energy spectra $\Leftrightarrow \begin{aligned} & \text { moments of inertia } \\ & \mathcal{J}_{x}, \mathcal{J}_{y}, \mathcal{J}_{z}\end{aligned}$ (more in $h_{\text {s.p. }}$ if a particle coupled)

$$
\begin{aligned}
& \text { two } Q \text {-moments } \\
& B(E 2) \text { 's } \Leftrightarrow\left\{\begin{array}{l}
Q_{20} \propto \Sigma\left(2 z^{2}-x^{2}-y^{2}\right) \\
Q_{22} \propto \Sigma\left(x^{2}-y^{2}\right)
\end{array}\right.
\end{aligned}
$$

$$
\tan \gamma=-\frac{\sqrt{2} Q_{22}}{Q_{20}}
$$

(Lund convention of sign)
c.f. if $\mathcal{J}_{y}=\mathcal{J}_{z}$

$$
B(E 2)_{\text {out }} / B(E 2)_{\text {in }} \propto \tan ^{2}\left(\gamma+30^{\circ}\right)
$$

Particle-Rotor Model Cal. by
Hamamoto-Hagemann, PRC67, 014319 (2003).

Microscopic cranked mean-field plus RPA (1)

good correspondence Rotor Model

Mean-field parameters

Microscopic cranked mean-field plus RPA (2)
Difference in the definition of γ

- " $\gamma($ pot)" in Nilsson potential

Good correspondence to Rotor Model by changing $\gamma($ pot $)=20^{\circ}$ to 30° !

- " $\gamma($ dens $) "=\tan ^{-1}\left(-\frac{\left\langle\sqrt{2} Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right)$ $(\leftrightarrow$ Rotor Model)

Parametrization of triaxial deformation (1)

- $\gamma($ dens $) \Leftrightarrow$ density distribution

$$
\gamma(\text { dens })=\tan ^{-1}\left(-\frac{\left\langle\sqrt{2} Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right), \quad\langle O\rangle=\int O(\boldsymbol{r}) \rho(\boldsymbol{r}) d^{3} \boldsymbol{r}
$$

- $\gamma($ shape $) \leftrightarrow$ potential shape (geometry) $\quad \rho_{\text {LD }}$: liquid-drop like sharp-cutoff density

$$
\gamma(\text { shape })=\tan ^{-1}\left(-\frac{\left\langle\sqrt{2} Q_{22}\right\rangle_{\mathrm{LD}}}{\left\langle Q_{20}\right\rangle_{\mathrm{LD}}}\right), \quad \rho \rightarrow \rho_{\mathrm{LD}}=\left\{\begin{array}{ll}
\rho_{0} \text { in } \Sigma & \Sigma: \text { nuclear } \\
0 & \text { out of } \Sigma
\end{array}\right. \text { surface }
$$

where the nuclear surface Σ is defined by $\underline{V(\boldsymbol{r} ; \text { def. })=\text { const. }\left(\text { e.g. } \frac{1}{2} V_{0}\right) ~}$

$$
\Sigma: r=R(\Omega)
$$

(neglecting velocity-dependent part)

> nuclear selfconsistency $\gamma($ dens $) \approx \gamma($ shape $)$ (in good approximation)

Parametrization of triaxial deformation (2)

- $\gamma($ pot $) \Leftrightarrow$ parametrization in each mean-field potential

Nilsson: $\left(\epsilon_{2}, \gamma, \epsilon_{4}, \ldots\right)$ defined in stretched coordinate $\left(r^{\prime}, \Omega^{\prime}\right)$ by $\left(x^{\prime}=\sqrt{\omega_{x} / \omega_{0}} x, \ldots\right)$

$$
\begin{aligned}
& V(\boldsymbol{r})=\frac{1}{2} M \omega_{\mathrm{v}}^{2} r^{\prime 2}\left(1-\sqrt{\frac{16 \pi}{45}} \epsilon_{2}\left[\cos \gamma Y_{20}\left(\Omega^{\prime}\right)-\sin \gamma \frac{1}{\sqrt{2}}\left(Y_{22}\left(\Omega^{\prime}\right)+Y_{2-2}\left(\Omega^{\prime}\right)\right)\right]+\epsilon_{4} \times \cdots\right) \\
& \Sigma: R(\Omega)=R_{\mathrm{v}}\left[\left(\because \cdot{ }^{\circ}\right)\left(1-\sqrt{\frac{16 \pi}{45}} \epsilon_{2}\left[\cos \gamma Y_{20}(\Omega)-\sin \gamma \frac{1}{\sqrt{2}}\left(Y_{22}(\Omega)+Y_{2-2}(\Omega)\right)\right]\right)\right]^{-1 / 2}
\end{aligned}
$$

Woods-Saxon: $\left(\beta_{2}, \gamma, \beta_{4}, \ldots\right)$

$$
\begin{aligned}
& V(\boldsymbol{r})=V_{0}\left[1+\exp \left(D_{\Sigma}(\boldsymbol{r}) / a\right)\right]^{-1}, \quad D_{\Sigma}(\boldsymbol{r})=\text { distance between } \boldsymbol{r} \text { and surface } \Sigma \\
& \quad \Sigma: R(\Omega)=R_{\mathrm{V}}\left(1+\beta_{2}\left[\cos \gamma Y_{20}(\Omega)-\sin \gamma \frac{1}{\sqrt{2}}\left(Y_{22}(\Omega)+Y_{2-2}(\Omega)\right)\right]+\beta_{4} \times \cdots\right)
\end{aligned}
$$

Parametrization of triaxial deformation (3)

(Harmonic oscillator potential : Nilsson with $\epsilon_{4}=0$)

$$
V(\boldsymbol{r})=\frac{1}{2} M\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

surface $\Sigma: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$: Ellipsoid

$$
\text { here } a: b: c=\omega_{x}^{-1}: \omega_{y}^{-1}: \omega_{z}^{-1}
$$

parametrization of Nilsson pot. $\left(\epsilon_{2}, \gamma\right)$

$$
\left\{\begin{array}{l}
\omega_{x}=\omega_{\mathrm{v}}\left(1+\frac{1}{3} \epsilon_{2}(\cos \gamma+\sqrt{3} \sin \gamma)\right) \\
\omega_{y}=\omega_{\mathrm{v}}\left(1+\frac{1}{3} \epsilon_{2}(\cos \gamma-\sqrt{3} \sin \gamma)\right) \\
\omega_{z}=\omega_{\mathrm{v}}\left(1-\frac{2}{3} \epsilon_{2} \cos \gamma\right)
\end{array}\right.
$$

$$
\tan \gamma(\text { shape })=-\frac{\left\langle\sqrt{2} Q_{22}\right\rangle_{\mathrm{LD}}}{\left\langle Q_{20}\right\rangle_{\mathrm{LD}}}=\frac{\sqrt{3}\left\langle\sum\left(y^{2}-x^{2}\right)\right\rangle_{\mathrm{LD}}}{\left\langle\sum\left(2 z^{2}-x^{2}-y^{2}\right)\right\rangle_{\mathrm{LD}}}
$$

$$
\begin{gathered}
\gamma(\text { shape })=\tan ^{-1}\left(\frac{\sqrt{3}\left(\omega_{y}^{-2}-\omega_{x}^{-2}\right)}{2 \omega_{z}^{-2}-\omega_{x}^{-2}-\omega_{y}^{-2}}\right) \Leftrightarrow \gamma(\text { pot })=\tan ^{-1}\left(\frac{\sqrt{3}\left(\omega_{y}-\omega_{x}\right)}{2 \omega_{z}-\omega_{x}-\omega_{y}}\right) \\
\text { if } \epsilon_{2},|\gamma| \ll 1, \quad \gamma(\text { shape }) \approx\left(1-\frac{3}{2} \epsilon_{2}\right) \gamma(\text { pot })
\end{gathered}
$$

c.f. For the spherical H.O. plus $Q \cdot Q$ force (usually restricted in one-two major shells)

$$
\left.\begin{array}{c}
V(\boldsymbol{r})=\frac{1}{2} M \omega_{0}^{2} \boldsymbol{r}^{2}-\alpha_{20} Q_{20}-\alpha_{22}\left(Q_{22}+Q_{2-2}\right) \\
\alpha_{2 \mu}=\chi\left\langle Q_{2 \mu}\right\rangle
\end{array}\right\} \Longrightarrow \gamma(\text { dens })=\tan ^{-1}\left(\frac{\sqrt{3}\left(\omega_{y}^{2}-\omega_{x}^{2}\right)}{2 \omega_{z}^{2}-\omega_{x}^{2}-\omega_{y}^{2}}\right)
$$

(Introducing δ_{2} corresponding to $\left.\epsilon_{2}\right)$ if $\delta_{2},|\gamma| \ll 1, \quad \gamma($ shape $) \approx \underline{\left(1-2 \delta_{2}\right)} \gamma($ dens $)$
Selfconsistency, $\gamma($ shape $) \approx \gamma($ dens $)$, is severely broken!

Triaxiality suggested by experimental $B(E 2)$'s in ${ }^{163} \mathrm{Lu}$

$\boldsymbol{\gamma}$-dependence in Rotor Model \Leftrightarrow Microscopic RPA cal. (Talk by T. Shoji)
$B(E 2)_{\text {in }} \approx \frac{15}{32 \pi}\left\langle\Sigma\left(y^{2}-z^{2}\right)\right\rangle^{2} \propto \cos ^{2}\left(\gamma+30^{\circ}\right), \quad$ Here γ is $\gamma($ dens $)$
$B(E 2)_{\text {in }} / B(E 2)_{\text {out }} \approx \frac{2}{I}\left(\frac{\left(w_{z} / w_{y}\right)^{1 / 4} \sin \left(\gamma+60^{\circ}\right)+\left(w_{y} / w_{z}\right)^{1 / 4} \sin \gamma}{\cos \left(\gamma+30^{\circ}\right)}\right)^{2}\left\{\begin{array}{l}w_{y}=1 / \mathcal{J}_{z}-1 / \mathcal{J}_{x} \\ w_{z}=1 / \mathcal{J}_{y}-1 / \mathcal{J}_{x}\end{array}\right.$
Can we understand $B(E 2)$'s by changing γ based on Microscopic RPA cal.?
Woods-Saxon RPA cal. using $\gamma($ pot $)=18^{\circ}\left(\gamma(\right.$ dens $\left.)=11.5^{\circ}\right)$
\rightarrow An example: changing $\gamma($ dens $)=12^{\circ}$ to 22° linearly according to the formula above,

Summary

- $B(E 2)_{\text {out }} / B(E 2)_{\text {in }}$ of wobbling band is sensitive to the triaxiality γ,
in both Rotor Model and Microscopic RPA calculation.
\rightarrow can be used to probe intrinsic triaxial deformation!
- Different definitions of the triaxiality parameter γ

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\gamma(\text { dens }) \longleftarrow \text { density distribution } \\
\gamma(\text { shape }) \longleftarrow \\
\gamma(\text { pot }) \longleftarrow \text { shape of potential } \\
\text { parametrization in each potential }
\end{array} \text { e.g. } \gamma(\text { dens })=\tan ^{-1}\left(-\frac{\left\langle\sqrt{2} Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right)\right. \\
& \gamma(\text { dens }) \approx \gamma(\text { shape }) \text { in good approximation (nuclear selfconsistency), } \\
& \text { but } \gamma(\text { pot }) \text { is quite different especially for large } \epsilon_{2} \text { deformation (Nilsson/Woods-Saxon). } \\
& \text { e.g. } \gamma(\text { dens }) \approx \gamma(\text { shape }) \approx 20^{\circ} \leftrightarrow \gamma(\text { pot }) \approx 30^{\circ} \quad \text { at } \epsilon_{2} \approx 0.4(\mathrm{TSD})!
\end{aligned}
$$

- Suggestion by experimental data of $B(E 2)$'s in ${ }^{163} \mathrm{Lu}$

Almost constant $B(E 2)_{\text {out }} / B(E 2)_{\text {in }}$ and decreasing $B(E 2)_{\text {in }}$ can be understood by increasing γ (dens) by about 10° (e.g. 12° to 22°) in the observed spin range.
BUT Strutinsky calculation gives almost const. and small $\gamma\left(\right.$ dens) (e.g. 11° to 13°)!!
NEED MORE STUDY!!

