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Introduction
The correlations induced by the tensor force (tensor 
correlation) are important for structure of nuclei
But the tensor force is not usually included in the 
mean-field-type calculation.
We want to construct a mean-field-type model which 
can treat the tensor correlation and study the effect 
of the tensor correlation on structure of nuclei, which 
is probably different from those of the correlations by 
the central and LS forces.
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The correlation to be included

• In the simple HF 
calculation, the tensor 
correlation cannot be 
exploited.

• We need to include at 
least 2p-2h correlation
to exploit the tensor 
correlation.
⇒beyond mean beyond mean 
field modelfield model

Single-particle (H-F)
correlation
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Hartree-Fock cal. (MV1(VC)+G3RS(VT, VLS))

E K V VC VT VLS

14O -89.1 199.0 -288.1 -333.2 1.1 -8.9 

16O -124.1 230.0 -354.1 -418.1 0.0 -0.9 

22O -156.2 354.2 -510.3 -579.6 1.8 -21.5 

24O -163.2 375.0 -538.3 -612.2 1.7 -20.5 

28O -176.4 424.4 -600.8 -691.0 0.1 -2.2 



Charge- and parity-projected 
Hartree-Fock method

Sugimoto et al., Nucl. Phys. A 740 (2004) 77
Ogawa et al., PRC 73 (2006) 034301 



Charge- and parity-symmetry 
breaking mean field method

Tensor force is mediated by the pion.
Pseudo scalar (σ⋅∇)

To exploit the pseudo scalar character of the pion, 
we introduce parity-mixed single particle state. 
(over-shell correlation)

Isovector (τ)
To exploit the isovector character of the pion, we 
introduce charge-mixed single particle state.

Projection
Because the total wave function made from such 
parity- and charge-mixed single particle states 
does not have good parity and a definite charge 
number. We need to perform the parity and 
charge projections.

τσ•∇ τσ•∇
π
V

T

V
TToki et al., Prog. Theor. Phys. 108 (2002) 903.

Sugimoto et al., Nucl. Phys. A 740 (2004) 77.
Ogawa et al.,  Prog. Thoer. Phys. 111 (2004) 75.
cf. Bleuler, Proceeding of the international school of physics “Enrico Fermi”
36 (1966) 464.
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Schematic example (4He;A=4,Z=2)

4He, 0+

4He, 0-

mixed wave function
simple (0s)4

By combining the charge and parity mixings and projections, we can 
obtain a wave function which includes the correlations induced by the 
tensor force.



Symmetry projected Hartree-Fock 
method
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1. We take a Slater determinant made from 
single particle wave functions with parity and 
charge mixing as an intrinsic wave function.

2. We perform the parity and charge projections 
on the mixed parity and charge number wave 
function.

3. Taking a variation with the projected wave 
function, the charge-and parity-projected 
Hartree-Fock equation is obtained.

Ｔｈｅ ｍｅｔｈｏｄ ｂｅｙｏｎｄ ｍｅａｎ ｆｉｌｅｄ ｍｏｄｅｌ！
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Charge- and parity- projected 
Hartree- Fock equation

Sugimoto et al., Nucl. Phys. A 740 (2004) 77
cf. PPHF equation (Takami et al., Prog. Theor. Phys. 96 (1996) 407)

We solve the CPPHF equation selfconsistently
with the gradient method.
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The effect of the mixings and the 
projections (4He)

unit: MeV
XT

XTE

<VC
0> -19.17 -12.94 -14.36 -15.92

 <σ⋅σVC
S> -11.50 -11.33 -12.08 -11.67

<τ⋅τVC
T> -11.50 -6.24 -6.59 -7.43

<σ⋅στ⋅τVC
ST> -34.50 -26.35 -28.28 -29.73

<VT
0> 0.00 0.00 -0.19 -0.43

<τ⋅τVT
T> 0.00 0.00 -10.72 -30.16

<VLS
0> 0.00 0.00 0.56 1.78

<τ⋅τVLS
T> 0.00 0.00 0.11 0.13

<Vcoul>
PE sum

KE
Etotal

rms Rm (fm)
P(-)

Simple H-F PPHF CPPHF
original Volkov 1.5 1.5 1.5

No.1 0.81 0.81 0.81

-76.67 -56.85 -61.31 -64.75

0.00 0.00 -10.91 -30.59

0.00 0.00 0.67 1.91

0.83 0.76 0.78 0.85
-75.84 -56.10 -70.76 -92.58
48.54 39.98 49.67 64.39

1.37
-27.30 -16.12 -21.09 -28.19
1.48 1.63 1.50
0.00 0.00 0.08 0.16

m=0.6,b=h=0.0

1. By performing the parity 
projection, we can obtain 
the correlation induced by 
the tensor force.

2. Performing the charge 
projection further, we get 
much more contribution 
from the tensor force. It 
becomes three times larger
than  the PPHF case.

3. Projection before variation
is necessary to get the 
tensor correlation.

1
0 0 0 0
1 2 1 2 2 1 2

0

PPHF CPPHF

,π π π

τ ττ τ ττ τ τ+ − − +

+ −

+⇒ +

Sugimoto et al., Nucl. Phys. A 740 (2004) 77.



Application to O isotopes

We calculated sub-shell closed oxygen isotopes, 14O, 16O, 22O, 24O and 28O.
The spherical symmetry is assumed.

Only the couplings between the same j states (s1/2 and p1/2, p3/2 and d3/2) are included.
NN potential

MV1 (PTP 64 (1980) 1608) for the central part.
G3RS (PTP 39 (1968) 91) for the tensor and LS forces.

The attraction part of the 3E part of the central force and the 3-body force are 
adjusted to reproduce the biding energy and the charge radius of 16O.
The strength of the τ⋅τ part of the tensor force is changed by multiplying a numerical 
factor, xT to take into account correlations like
<s1/2 s1/2|VT|s1/2 d3/2> which is not included in the present calculation, effectively. 
(only <j1 j2|VT|j1 j2> type correlations are included in the CPPHF method.)
The strength of the LS force is multiplied by 2.

2

C 3B LS Coul CM
1 MV1 G3RS

T2

A

i
i

H V V V E
M

V V
=

⎛ ⎞
= − Δ + + + + + −⎜ ⎟

⎝ ⎠
∑



Single particle wave function 
(spherical case)
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We expand each φ by the Gaussian basis with a geometric-series widths.



Results for 16O

By performing the parity and charge 
projection the potential energy from the 
tensor force becomes sizable value.

xT E K V VT VLS

HF 1.0 -124.1 230.0 -354.1 0.0 -0.9 
CPPHF 1.0 -127.1 237.1 -364.24 -11.7 -1.0 
CPPHF 1.5 -127.6 253.9 -381.6 -38.3 -1.0 



BE and Rm
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The potential energy of the tensor force behaves differently from those 
of the central and LS forces.
It indicates that the tensor force affects the shell structure differently 
from the central and LS forces.
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Mixing of the opposite parity 
components

xT=1.0

0

0.05

0.1

0.15

0.2

0.25

0.3

14 16 18 20 22 24 26 28

A

P
ro

ba
bi

lit
y 0s1/2'

0p3/2'

0p1/2'

0d5/2'

1s1/2'

0d3/2'

0p1/2 1s1/2

j=1/2 states are important for the tensor correlation.



Wave function（１６O, ｘT=1.5)
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4He case
Opposite parity 
components mixed by the 
tensor force have narrow 
widths. It suggests that 
the tensor correlation 
needs high-momentum 
components.
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Density
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Charge Formfactor 16O

The tensor correlation induce higher momentum 
component.
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Summary
We make a mean-field model which can treat the 
tensor correlation by mixing parities and charges in 
single-particle states. (the CPPHF method)
The opposite parity components induced by the 
tensor force is compact in size. (high-momentum 
component)
The CPPHF calculation with the spherical symmetry 
shows that in the oxygen isotopes j=1/2 states are 
important for the tensor correlation.
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