

^aS. Tamenaga, ^aH. Toki , ^{a, b}A. Haga, and ^aY. Ogawa

^aRCNP, Osaka University ^bNagoya Institute of Technology

Contents

Introduction & motivation

- Pion and vacuum in the RMF theory
- Chiral sigma model and the problem of instability
- Radiative corrections of boson as the origin of SSB (Coleman- Weinberg renormalization scheme)
- One-loop corrections as the origin of SCSB
 - The dependence on renormalization scale and the relationship between renormalization and symmetry
 - Naturalness and the naive dimensional analysis (NDA)
- Density distribution of ¹⁶O
- 🗹 Summary

- Since Walecka model despite the renormalizable model, RMF theory has been improved almost with nosea approximation.
- Pion is the most important meson in realistic nuclear force and nuclear reaction, but pion had never been nuclear introduced to RMF theory due to parity conservation.
- Recently our group can introduce pionic correlations to RMF theory using CPPRMF method.
- We would like to discuss the importance of pion and Dirac sea in nuclear structure.

Chiral sigma model

$$\mathcal{L} = \bar{\psi} \left[i\gamma_{\mu} \partial^{\mu} - g_{\sigma} (\phi + i\gamma_{5}\tau \cdot \pi) - g_{\omega}\gamma_{\mu}\omega^{\mu} \right] \psi + \frac{1}{2} \left(\partial_{\mu}\phi \partial^{\mu}\phi + \partial_{\mu}\pi \cdot \partial^{\mu}\pi \right) - \frac{\mu^{2}}{2} \left(\phi^{2} + \pi^{2} \right) - \frac{\lambda}{4} \left(\phi^{2} + \pi^{2} \right)^{2} - \frac{1}{4} \Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2} \widetilde{g_{\omega}}^{2} \left(\phi^{2} + \pi^{2} \right) \omega_{\mu}\omega^{\mu} - \delta \mathcal{L}_{CTC}$$

Y. Ogawa et al, PTP111, 75 (2004),

Phys. Rev. C73, 034301 (2006)

- : sigma field *before* the chiral symmetry breaking
- σ : sigma field *after* the chiral symmetry breaking

Chiral sigma model is a renormalizable one but ...

Problems of chirally symmetric renormalization

Total effective potential from chirally symmetric renormalization becomes unstable, and vacuum fluctuation of nucleon loop has unnatural size??

J. Boguta, Nucl. Phys. A501, 637 (1989), R. J. Furnstahl, et al. NPA618, 446 (1997) 5

Spontaneous symmetry breaking in ϕ^4 theory

Negative-mass term gives rise to spontaneous symmetry breaking.

Loop contributions in ϕ^4 theory

We define the renormalized potential of boson loop with counterterms and take two renormalization conditions for mass and coupling constant.

$$\begin{aligned} \left. \frac{\partial^2 V_B^R}{\partial \phi^2} \right|_{\phi=0} &= 0 \\ V_B^R &= \frac{\mu^4}{64\pi^2} \left[\left(1 + \frac{\lambda \phi^2/2}{\mu^2} \right)^2 \ln \left(1 + \frac{\lambda \phi^2/2}{\mu^2} \right) - \frac{\lambda \phi^2/2}{\mu^2} - \frac{3}{2} \left(\frac{\lambda \phi^2/2}{\mu^2} \right)^2 \right] \end{aligned}$$

Radiative corrections as origin of SSB

Coleman & Weinberg redefine two renormalization conditions *before* the symmetry breaking in the massless ϕ^4 theory in order to avoid a logarithmical singularity. S. R. Coleman and E. Weinberg, PRD 7, 1888 (1973)

$$\begin{split} \left. \frac{\partial^2 V_B^R}{\partial \phi^2} \right|_{\phi=0} &= 0 \quad (\mu \to 0) \\ V_B^R &= \frac{\lambda^2 \phi^4}{256\pi^2} \left[\ln \left(\frac{\phi^2}{m^2} \right) - \frac{25}{6} \right] \\ V_B^{total} &= \frac{\lambda}{4!} \phi^4 + \frac{\lambda^2 \phi^4}{256\pi^2} \left[\ln \left(\frac{\phi^2}{m^2} \right) - \frac{25}{6} \right] \end{split}$$

Since the second term of total potential is negative around the origin, it has an effect to make a new minimum at some point away from the origin. This mechanism plays the role of spontaneous symmetry breaking.

One-boson loop with chiral symmetry

We have to consider three diagrams especially for the four external lines of sigma meson in the massless chiral sigma model. Especially we need the internal line of omega meson. However we can neglect the external lines of omega meson due to current conservation.

 $\frac{9(\pi n + 9\omega)}{64\pi^2} (\phi^2 + \pi^2)^2 \left| \ln \left(\frac{\psi + \pi}{m^2} \right) - \frac{25}{6} \right|$

New chirally symmetric renormalization

We also apply the Coleman & Weinberg renormalization scheme to nucleon loop *before* the chiral symmetry breaking. In the same way of boson loop, we also introduce the same renormalization scale to avoid a logarithmical singularity. $\rho^2 = \phi^2 + \pi^2$

$$\begin{aligned} \left. \frac{\partial^2 V_F^R}{\partial \rho^2} \right|_{\rho^2 = 0} &= 0 \quad (M \to 0) \\ V_F^R &= -\frac{g_\sigma^4}{8\pi^2} (\phi^2 + \pi^2)^2 \left[\ln\left(\frac{\phi^2 + \pi^2}{m^2}\right) - \frac{25}{6} \right] \end{aligned} \tag{M to } 0 \end{aligned}$$

Massless nucleon and boson loops

$$V_F^R = -\frac{g_\sigma^4}{8\pi^2} (\phi^2 + \pi^2)^2 \left[\ln\left(\frac{\phi^2 + \pi^2}{m^2}\right) - \frac{25}{6} \right]$$
$$V_B^R = \frac{3(4\lambda^2 + \widetilde{g_\omega}^4)}{64\pi^2} (\phi^2 + \pi^2)^2 \left[\ln\left(\frac{\phi^2 + \pi^2}{m^2}\right) - \frac{25}{6} \right]$$

The differences among boson and fermion loops are sign and coupling constants, but both of them have same function form!

One-loop corrections as origin of SCSB

$$U_{all} = V_{tree} + V_F^R + V_B^R - \epsilon \phi$$

= $\frac{1}{4}\lambda(\phi^2 + \pi^2)^2 + \frac{\gamma - 1}{8\pi^2}g_{\sigma}^4(\phi^2 + \pi^2)^2 \left[\ln\left(\frac{\phi^2 + \pi^2}{m^2}\right) - \frac{25}{6}\right] - \epsilon \phi$

We can obtain the total potential *before* the symmetry breaking and take the condition for a non-trivial new local minimum away from the origin.

$$\left. \frac{\partial U_{all}}{\partial \phi} \right|_{\phi = f_{\pi}} = 0 \qquad \gamma = \left| \frac{V_B^R}{V_F^R} \right| = \frac{3(4\lambda^2 + \widetilde{g_{\omega}}^4)}{8g_{\sigma}^4}$$

$$\frac{3}{2\pi^2} \left[\ln \left(\frac{f_\pi}{m} \right) - \frac{11}{6} \right] \lambda^2 + \lambda - \frac{g_\sigma^4 - \frac{3}{8} \widetilde{g_\omega}^4}{\pi^2} \left[\ln \left(\frac{f_\pi}{m} \right) - \frac{11}{6} \right] - \frac{\epsilon}{f_\pi^3} = 0$$

$$f_\pi = 93 [\text{MeV}] \qquad M = g_\sigma f_\pi = 939 [\text{MeV}]$$

$$m_\omega = \widetilde{g_\omega} f_\pi = 783 [\text{MeV}] \qquad m_\pi = \sqrt{\frac{\epsilon}{f_\pi}} = 139 [\text{MeV}]$$
Free parameter
$$M = \frac{\lambda}{77.07} \frac{\gamma}{1.038} \frac{m_\sigma [\text{MeV}]}{641} \frac{g_\sigma}{10.09} \frac{\widetilde{g_\omega}}{8.42} \qquad g_\omega = \widetilde{g_\omega}$$

$$m = f_\pi$$

$$12$$

The stable effective potential

13

Dependence on renormalization scale

14

Broken symmetry between fermion and boson

$$\gamma = \left|\frac{V_B^R}{V_F^R}\right| = \frac{3(4\lambda^2 + \widetilde{g_\omega}^4)}{8g_\sigma^4}$$

The restoration of chiral symmetry
 All of one-loop corrections are perfectly cancelled.

Symmetry

(Chiral symmetry and symmetry between fermion and boson)

Naturalness and naive dimensional analysis (NDA)

$$U_n(\sigma) = \kappa_n \frac{1}{n!} f_\pi^2 M^2 \left(\frac{\sigma}{f_\pi}\right)^n$$

H. Georgi, Adv. Nucl. Phys. 43, 209 (1993)

If naturalness holds, a dimensionless coefficient κ_n is O(1). For example, we check the bare potential in massless ϕ^4 theory.

$$\frac{\lambda}{4}\sigma^{4} = \kappa_{4} \left(\frac{1}{4!} \frac{M^{2}}{f_{\pi}^{2}} \sigma^{4}\right) \longrightarrow \kappa_{4} = \frac{3!\lambda f_{\pi}^{2}}{M^{2}} = 1.988$$
As next case, we check the vacuum fluctuation from nucleon loop in the Walecka model.
$$\Delta \mathcal{E}_{VF}^{Walecka} = -\frac{1}{4\pi^{2}} \left[M^{*4} \ln \left(\frac{M^{*}}{M}\right) - M^{3} \Phi - \frac{7}{2} M^{2} \Phi^{2} - \frac{13}{3} M \Phi^{3} - \frac{25}{12} \Phi^{4} \right] \\ = -\frac{M^{4}}{4\pi^{2}} \left[\frac{1}{5} \left(\frac{\Phi}{M}\right)^{5} - \frac{1}{30} \left(\frac{\Phi}{M}\right)^{6} + \dots + \frac{4!(n-5)!(-1)^{n-1}}{n!} \left(\frac{\Phi}{M}\right)^{n} \right] \\ -\frac{M^{4}}{4\pi^{2}} \frac{\Phi^{4}}{5M^{5}} = \kappa_{5} \left(\frac{1}{5!} \frac{M^{2}}{f_{\pi}^{3}} \sigma^{5} \right) \longrightarrow \kappa_{5} = -\frac{3!g_{\sigma}}{\pi^{2}} = -61.97$$

¹⁶ We estimate the leading term in Dirac sea by NDA and it does not have natural coefficient.

Estimation of naturalness

In this estimation, we choose $m = f_{\pi}$ for simplicity.

$$\Delta \mathcal{E}_{VF}^{MCSM} = -\frac{\gamma - 1}{4\pi^2} M^4 \left[-9 \left(\frac{\Phi}{M}\right)^2 - 4 \left(\frac{\Phi}{M}\right)^3 + \frac{1}{5} \left(\frac{\Phi}{M}\right)^5 - \frac{1}{30} \left(\frac{\Phi}{M}\right)^6 + \dots + \frac{4!(n-5)!(-1)^{n-1}}{n!} \left(\frac{\Phi}{M}\right)^n \right]$$
$$\gamma = 1.038 \quad (m \to f_\pi)$$
$$-\frac{\gamma - 1}{4\pi^2} \frac{9M^4 \Phi^2}{M^2} = \kappa_2 \left(\frac{M^2}{2!} \sigma^2\right) \longrightarrow \qquad \kappa_2 = -\frac{9g_\sigma^2}{2\pi^2} (\gamma - 1) = -1.76$$
$$\frac{\gamma - 1}{4\pi^2} \frac{M^4 \Phi^5}{5M^5} = \kappa_5 \left(\frac{M^2}{5! f_\pi^3} \sigma^5\right) \longrightarrow \qquad \kappa_5 = \frac{3!g_\sigma^2}{\pi^2} (\gamma - 1) = 2.35$$

When we consider the effect of only nucleon loop in any model and any renormalization scheme, it has too large non-linear potential and unnatural coefficient. By introducing both nucleon and boson loops *before* the symmetry breaking, two contributions from vacuum fluctuation are almost canceled. Thus we obtain the natural and stable potential with the effect of Dirac sea. In the RMF, *naturalness restores by introducing one-loop corrections of nucleon and bosons.*

Power of renormalization for wave function

preliminary result without pion mean field

- We can construct the massless chiral model with one-nucleon and one-boson loops in the Coleman-Weinberg scheme.
- In addition, we naturally obtain the stable effective potential with Dirac sea in the chiral model for the first time.
- SCSB is derived from broken balance among nucleon and bosons, and both nucleon and bosons become massive at the same time.
- By introducing nucleon and boson loop to RMF theory, naturalness restores in the massless chiral sigma model.
- It is possible to reveal the relationship between symmetry breaking and vacuum structure.
- As future works, we would like to study the properties in the finite nuclei, at finite temperature, at high density, and the gauge theory into this model; γ , ω meson, ρ meson, and a₁ meson.