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Introduction

Since Walecka model despite the
renormalizable model, RMF theory
has been improved almost with no-
sea approximation.

Pion is the most important meson in
realistic nuclear force and nuclear
reaction, but pion had never been
introduced to RMF theory due to
parity conservation.

RMF
RHA

Recently our group can introduce
pionic correlations to RMF theory
using CPPRMF method.

We would like to discuss the
importance of pion and Dirac sea in
nuclear structure.
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Chiral sigma model
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¢ : sigma field before the chiral symmetry breaking

(O - sigma field after the chiral symmetry breaking

Chiral sigma model is a renormalizable one but ...



Problems of chirally symmetric renormalization
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Total effective potential from chirally symmetric renormalization becomes
unstable, and vacuum fluctuation of nucleon loop has unnatural size??
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J. Boguta, Nucl. Phys. A501, 637 (1989), R. J. Furnstahl, et al. NPA618, 446 (1997)



Spontaneous symmetry breaking in ¢* theory
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Negative-mass term gives rise to spontaneous symmetry breaking.



Loaop contributions in ¢ theory
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We define the renormalized potential of boson loop with counterterms
and take two renormalization conditions for mass and coupling constant.
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Radiative corrections as origin of SSB

Coleman & Weinberg redefine two renormalization conditions before the
symmetry breaking in the massless ¢4 theory in order to avoid a

logarithmical singularity. ¢ ¢ (gleman and E. Weinberg, PRD 7, 1888 (1973)

PV,
96% |,_,
Vi =
total __ i + >\2¢4 ¢_2 _ §
VE™ = 19+ o5e2 | 6

Since the second term of total potential is negative around the origin,
it has an effect to make a new minimum at some point away from the
origin. This mechanism plays the role of spontaneous symmetry breaking.
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One-boson loop with chiral symmetry
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We have to consider three diagrams especially for the four external lines of
sigma meson in the massless chiral sigma model. Especially we need the
internal line of omega meson. However we can neglect the external lines of
omega meson due to current conservation.
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New chirally symmetric renormalization
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We also apply the Coleman & Weinberg renormalization scheme to nucleon
loop before the chiral symmetry breaking. In the same way of boson loop, we
also introduce the same renormalization scale to avoid a logarithmical

singularity. p? = ¢* + 7
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Massless nucleon and boson loops
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The differences among boson and fermion loops are sign and
coupling constants, but both of them have same function form!

Local minimum condition y




One-loop corrections as origin of SCSB
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We can obtain the total potential before the symmetry breaking and take
the condition for a non-trivial new local minimum away from the origin.
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The stable effective potential

One-loop potential [fm™]
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This stable effective potential is not made by us
but appears naturally from the chiral symmetry!



Dependence on renormalization scale
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We take the limit 77 — OO especially for two cases ...
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Broken symmetry between fermion and boson
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1: The restoration of chiral symmetry
2: All of one-loop corrections are perfectly cancelled.
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Naturalness and naive dimensional analysis (NDA)
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If naturalness holds, a dimensionless coefficient knis O(1).
For example, we check the bare potential in massless ¢* theory.
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As next case, we check the vacuum fluctuation M*=M + g,0
from nucleon loop in the Walecka model. b =g,0
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We estimate the leading term in Dirac sea by NDA and it does not have natural coefficient.



Estimation of naturalness

In this estimation, we choose m =f, for simplicity.
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When we consider the effect of only nucleon loop in any model and any
renormalization scheme, it has too large non-linear potential and unnatural
coefficient. By introducing both nucleon and boson loops before the
symmetry breaking, two contributions from vacuum fluctuation are almost
canceled. Thus we obtain the natural and stable potential with the effect of

Dirac sea. In the RMF, naturalness restores by introducing one-loop corrections of
nucleon and bosons. 17



Power of renormalization for wave function
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preliminary result without pion mean field .
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Summary

We can construct the massless chiral model with one-nucleon
and one-boson loops in the Coleman-Weinberg scheme.

In addition, we naturally obtain the stable effective potential
with Dirac sea in the chiral model for the first time.

SCSB is derived from broken balance among nucleon and
bosons, and both nucleon and bosons become massive at the
same time.

By introducing nucleon and boson loop to RMF theory,
naturalness restores in the massless chiral sigma model.

It is possible to reveal the relationship between symmetry
breaking and vacuum structure.

As future works, we would like to study the properties in the
finite nuclei, at finite temperature, at high density, and the
gauge theory into this model; y, ® meson, p meson, and aj
meson.
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