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Introduction

• Since Walecka model despite the 
renormalizable model,  RMF theory 
has been improved almost with no-
sea approximation. 

• Pion is the most important meson in 
realistic nuclear force and nuclear 
reaction, but pion had never been 
introduced to RMF theory due to 
parity conservation.

• Recently our group can introduce 
pionic correlations to RMF theory 
using CPPRMF method. 

• We would like to discuss the 
importance of pion and Dirac sea in 
nuclear structure. 3
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Chiral sigma model
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Chiral sigma model is a renormalizable one but ...

Y. Ogawa et al, PTP111, 75 (2004),

Phys. Rev. C73, 034301 (2006)
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Problems of chirally symmetric renormalization
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Total effective potential from chirally symmetric renormalization becomes 
unstable, and vacuum fluctuation of nucleon loop has unnatural size??

J. Boguta, Nucl. Phys. A501, 637 (1989), R. J. Furnstahl, et al.  NPA618,  446 (1997)
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Spontaneous symmetry breaking in φ4 theory
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Loop contributions in φ4 theory
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We define the renormalized potential of boson loop with counterterms
and take two renormalization conditions for mass and coupling constant.

for mass for coupling constant
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Radiative corrections as origin of SSB

8

Coleman & Weinberg redefine two renormalization conditions before the 
symmetry breaking in the massless ϕ4 theory in order to avoid a 
logarithmical singularity.

Since the second term of total potential is negative around the origin,
it has an effect to make a new minimum at some point away from the 
origin. This mechanism plays the role of spontaneous symmetry breaking.

S. R. Coleman and E. Weinberg,  PRD 7,  1888 (1973)

∂4V R
B

∂φ4

∣∣∣∣
φ=m

= 0 (µ→ 0)

V R
B =

λ2φ4

256π2

[
ln

(
φ2

m2

)
− 25

6

]

V total
B =

λ

4!
φ4 +

λ2φ4

256π2

[
ln

(
φ2

m2

)
− 25

6

]

∂2V R
B

∂φ2

∣∣∣∣
φ=0

= 0 (µ→ 0)

The renormalization scale



One-boson loop with chiral symmetry
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We have to consider three diagrams especially for the four external lines of 
sigma meson in the massless chiral sigma model.  Especially we need the 
internal line of omega meson. However we can neglect the external lines of 
omega meson due to current conservation.

Three kinds of pion
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New chirally symmetric renormalization
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We also apply the Coleman & Weinberg renormalization scheme to nucleon 
loop before the chiral symmetry breaking. In the same way of boson loop, we 
also introduce the same renormalization scale to avoid a logarithmical 
singularity. 

∂2V R
F

∂ρ2

∣∣∣∣
ρ2=0

= 0 (M → 0)
∂4V R

F

∂ρ4

∣∣∣∣
ρ2=m2

= 0 (M → 0)

V R
F = − g4

σ

8π2
(φ2 + π2)2

[
ln

(
φ2 + π2

m2

)
− 25

6

]

ρ2 = φ2 + π2



Massless nucleon and boson loops
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The differences among boson and fermion loops are sign and  
coupling constants,  but both of them have same function form!
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One-loop corrections as origin of SCSB
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We can obtain the total potential before the symmetry breaking and take 
the condition for a non-trivial new local minimum away from the origin.
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The stable effective potential
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This stable effective potential is not made by us
but appears naturally from the chiral symmetry!

TM1; Y. Sugahara and H. Toki, 

           NPA579, 557 (1994)

CSM; Y. Ogawa et al.  

           PTP111, 75 (2004)

After SCSB



Dependence on renormalization scale
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Broken symmetry between fermion and boson
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1: The  restoration of chiral symmetry
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Naturalness and naive dimensional analysis (NDA)
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If naturalness holds,  a dimensionless coefficient  κn is O(1).
For example, we check the bare potential in massless φ4 theory.

As next case, we check the vacuum fluctuation 
from nucleon loop in the Walecka model.

We estimate the leading term in Dirac sea by NDA and  it does not have natural coefficient.

H. Georgi,  Adv. Nucl. Phys. 43, 209 (1993)
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Estimation of naturalness
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In this estimation, we choose m = fπ  for simplicity. 

When we consider the effect of only nucleon loop in any model and any 
renormalization scheme, it has too large non-linear potential and unnatural 
coefficient. By introducing both nucleon and boson loops before the 
symmetry breaking, two contributions from vacuum fluctuation are almost 
canceled. Thus we obtain the natural and stable potential with the effect of 
Dirac sea. In the RMF, naturalness restores by introducing one-loop corrections of 
nucleon and bosons.
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Power of renormalization for wave function
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Summary
We can construct the massless chiral model with one-nucleon 
and one-boson loops in the Coleman-Weinberg scheme.
In addition, we naturally obtain the stable effective potential 
with Dirac sea in the chiral model for the first time.
SCSB is derived from broken balance among nucleon and 
bosons, and both nucleon and bosons become massive at the 
same time.
By introducing nucleon and boson loop to RMF theory, 
naturalness restores in the massless chiral sigma model. 
It is possible to reveal the relationship between symmetry 
breaking and vacuum structure.

As future works, we would like to study the properties in the 
finite nuclei, at finite temperature, at high density, and the 
gauge theory into this model; γ, ω meson, ρ meson, and a1 
meson.
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