

Alexander Volya

Florida State University

Collaborators:

B.A. Brown, N.D. Dang, C. Davids, M. Horoi, D. Mulhall, T. Sumaryada, K. Tanabe, V. Zelevinsky

References:

- V. Zelevinsky, A. Volya, Nucl. Phys. A 752, (2005) 325c
- A. Volya and C. Davids, Eur. Phys. J. A, 25 (supp. 1), (2005) 161-163.
- V. Zelevinsky and A. Volya, Nucl. Phys. 731, (2004) 299-310.
- A. Volya and V. Zelevinsky, Phys. Lett. B574, (2003) 27-34.
- V. Zelevinsky and A. Volya, Phys. Part. Nucl. 66, (2003) 1829-1849.
- A. Volya, Phys. Rev. C. 65, (2002) 044311.
- A. Volya, V. Zelevinsky, B. A. Brown, Phys. Rev. C 65, (2002) 054312.
- A. Volya, B. A. Brown, and V. Zelevinsky, Prog. Theor. Phys. Supp. 146 (2002) 636.
- A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).
- A. Volya and V. Zelevinsky, Phys. Rev. C 67, (2003) 054322.

Support:

U.S. Department of Energy grants DE-FG02-92ER40750 and W-31-109-ENG-38

National Science Foundation grants PHY-0070911 and PHY-0244453

Topics of Discussion

Exact solution of nuclear pairing

- Properties of the ground state
- Pairing correlation energy
- Occupation numbers
- Spectroscopic factors
- Excited states
- Beyond pairing
- Perturbation theory starting from pairing
- Pairing and deformation
- Hartree-Fock + pairing

Pairing Hamiltonian

Pairing on degenerate time-conjugate orbitals

$$
|1\rangle \leftrightarrow|\tilde{1}\rangle \quad|\tilde{m}\rangle=(-1)^{j-m}|j-m\rangle
$$

- Pair operators $P=\left(\mathrm{a}_{1} \mathrm{a}_{1}\right)_{\mathrm{J}=0} \quad(\mathrm{~J}=0, \mathrm{~T}=1)$
- Number of unpaired fermions is seniority s
- Unpaired fermions are untouched by H

$$
H=\sum_{1} \epsilon_{1} N_{1}-\sum_{12} G_{12} P_{1}^{\dagger} P_{2}
$$

Approaching the solution of pairing problem

- Approximate
- BCS theory
- HFB+correlations+RPA
- Iterative techniques
- Exact solution
- Richardson solution
- Algebraic methods
- Direct diagonalization + quasispin symmetry

Shortcomings of BCS

- Particle number non-conservation

$$
|\mathrm{BCS}\rangle=\prod_{\nu(\text { doublets })}\left\{u_{\nu}-v_{\nu} P_{\nu}^{\dagger}\right\}|0\rangle
$$

- Phase transition and weak pairing problem

Example

$$
G=G_{\nu \nu^{\prime}}, \quad \text { gap eq. } 1=G \sum_{\nu} \frac{1}{2 E_{\nu}}
$$

$$
G<G_{c} \quad \Delta=0, \quad \text { where } 1=G_{c} \sum_{\nu} \frac{1}{2 \epsilon_{\nu}^{\prime}}
$$

- Excited states, pair vibrations

Quasispin and exact solution of pairing problem (EP)

On each single j-level

- Operators $P_{\mathrm{j}}^{\dagger}, P_{\mathrm{j}}$ and N_{j} form a $\mathrm{SU}(2)$ group $P^{\dagger} \sim L^{+}{ }_{\mathrm{j}}, P_{\mathrm{j}} \sim L_{\mathrm{j}}$, and $N_{\mathrm{j}} \sim L_{\mathrm{j}}{ }^{\mathrm{Z}}$
- Quasispin L^{2} is a constant of motion,
seniority $\mathrm{s}_{\mathrm{j}}=(2 \mathrm{j}+1)-2 L_{\mathrm{j}}$
- States can be classified with set
$\left(L_{\mathrm{j}} L_{\mathrm{j}}^{\mathrm{z}}\right) \Leftrightarrow\left(\mathrm{s}_{\mathrm{j}}, N_{\mathrm{j}}\right)$
- Each s_{j} is conserved but N_{j} is not
- Extra conserved quantity simplifies solution.

Example: ${ }^{116} \mathrm{Sn}$: 601,080,390 m-scheme states 272,828 J=0 states

$$
110 \text { s=0 states }
$$

Linear algebra with sparse matrices is fast. Deformed basis Nmax~50-60

- Generalization to isovector pairing, R_{5} group

Pairing phase transition

Pairing correlations in calcium

BCS fails to describe pairing correlations in ${ }^{48} \mathrm{Ca}$

Pairing becomes weak if

$\mathrm{G} / \Delta \varepsilon \sim 1$ at Fermi surface

Occupation numbers and spectroscopic factors

Below critical G, weak pairing

$$
n_{j}=\langle N| a_{j}^{\dagger} a_{j}|N\rangle
$$

- Spectroscopic factors

$$
\begin{aligned}
& v_{j}=\langle N-1| a_{j}|N\rangle \\
& u_{j}=\langle N+1| a_{j}^{\dagger}|N\rangle
\end{aligned}
$$

- Two-body
spectroscopic factors

$$
\begin{aligned}
& \mathcal{P}_{j}(N)=\langle N-2| P_{j}|N\rangle \\
& \mathcal{P}_{j}^{\dagger}(N)=\mathcal{P}_{J}(N+2)^{*}=\langle N+2| P_{j}^{\dagger}|N\rangle
\end{aligned}
$$

$\mathrm{BCS}: \quad n_{j}=v_{j}^{2}=1-u_{j}^{2}, \quad \mathcal{P}_{j}(\bar{N})=\sqrt{n_{j}\left(1-n_{j}\right)}=u_{j} v_{j}$

Ladder-system with constant G

occupation numbers single nucleon transitions
two nucleon emission

Ladder with 12 levels, $\mathrm{N}=12$

Occupation numbers and spectroscopic factors ${ }^{114} \mathrm{Sn}$

Exact calculation and BCS

Separation energy:
$S(N)=E(N-1)-E(N)$

j	$\mathrm{g}_{7 / 2}$	$\mathrm{~d}_{5 / 2}$	$\mathrm{~d}_{3 / 2}$	$\mathrm{~s}_{1 / 2}$	$\mathrm{~h}_{11 / 2}$
$\mathrm{~N}_{\mathrm{j}}$	6.96	4.46	0.627	0.356	1.60
$\mathrm{~N}_{\mathrm{j}}$	6.71	4.14	0.726	0.507	1.91
n_{j}	0.870	0.744	0.157	0.178	0.133
$1-\mathrm{u}_{\mathrm{j}}$	0.872	0.748	0.162	0.183	0.137
$\mathrm{v}^{2}{ }_{\mathrm{j}}$	0.865	0.736	0.155	0.177	0.131
n_{j}	0.839	0.690	0.181	0.254	0.159
$\mathrm{~S}(\mathrm{~N}+1)$	2.80	3.13	3.14	3.39	3.29
$\mathrm{~S}(\mathrm{~N}+1)$	2.89	3.21	3.11	3.21	3.26
$\mathrm{~S}(\mathrm{~N})$	6.86	6.55	7.25	6.98	7.12
$\mathrm{~S}(\mathrm{~N})$	6.89	6.64	7.20	7.03	7.06
$P(\mathrm{~N}+2)$	0.680	0.779	0.617	0.514	1.03
$P(\mathrm{~N})$	0.810	0.930	0.524	0.396	0.845
P	0.734	0.801	0.545	0.435	0.896

[Low-lying states in paired systems

- Exact treatment
- No phase transition and $G_{\text {critical }}$
- Different seniorities do not mix
- Diagonalize for pair vibrations
- BCS treatment

	$G<G_{\text {critical }}$	$G>G_{\text {critical }}$
Ground state	Hartree-Fock	BCS
Elementary excitations	single-particle excitations $E_{\mathrm{s}=2}=2 \varepsilon$	quasiparticle excitation $E_{\mathrm{s}=2}=2 e$
Collective excitations	$\mathrm{HF}+\mathrm{RPA}$	$\mathrm{HFB}+\mathrm{RPA}$

Low-lying states: Two-level pairing model

Two-level system N=16
BCS solution

$V_{\text {critical }}=\frac{4 \epsilon}{\Omega}=0.25$
$e_{1}=e_{2}=\frac{G \Omega}{4}, \Delta^{2}=\frac{G^{2} \Omega^{2}}{16}-\epsilon^{2}$
Quasiparticle excitations
$E_{s=2}=\left\{\begin{array}{cc}2 e & G>G_{\text {critical }} \\ 2 \mathcal{E} & G<G_{\text {critical }}\end{array}\right.$
Pair vibrations:
$E_{\mathrm{ex}}^{2}=\left\{\begin{array}{cc}\frac{G^{2} \Omega^{2}}{2}-8 \epsilon^{2}=8 \Delta^{2} & G>G_{\text {critical }} \\ 4 \epsilon^{2}-\frac{V^{2} \Omega^{2}}{4} & G<G_{\text {critical }}\end{array}\right.$

Is there a pairing phase transition in mesoscopic system?

Mixing of states $|\alpha\rangle=\sum_{k} C_{k}^{\alpha}(G)|k\rangle$ $|k\rangle$ - some reference basis states Matrix ρ for each state α

$$
\rho_{k k^{\prime}}^{\alpha}(G, \delta G)=\frac{1}{\delta G} \int_{G}^{G+\delta G} C_{k^{\prime}}^{\alpha}(G)^{*} C_{k}^{\alpha}(G) d G
$$

Invariant entropy

$$
I^{\alpha}(G, \delta G)=-\operatorname{Tr}\left(\rho^{\alpha} \ln \left(\rho^{\alpha}\right)\right)
$$

-Invariant entropy is basis independent -Indicates the sensitivity of eigenstate α to parameter G in interval [G,G+ $\delta \mathbf{G}]$

Contour plot of invariant correlational entropy showing a phase diagram as a function of $T=1$ pairing $\left(\lambda_{T=1}\right)$ and $T=0$ pairing $\left(\lambda_{T=0}\right)$; three plots indicate phase diagram as a function of non-pairing matrix elements $\left(\lambda_{n p}\right)$. Realistic case is $\lambda_{T=1}=\lambda_{T=0}=\lambda_{n p}=1$

Pair vibrations in realistic cases

$>$ A number of $\mathrm{J}=0$ states are pair-vibrations: "worsened" copies of the ground state. $>\mathrm{J}=0$ states are less effected by other interactions
$>$ These states lie above the 2Δ

Pairing and other residual interactions. Why pairing correlations survive?

- Nucleon-nucleon interaction is short range.
- Many non-pairing components of interaction preserve seniority (do not effect pairing).
- Finite nuclear size can be important.
- Pairing correlations can be enhanced in special regions, such as near oblate \Leftrightarrow prolate shape change.

How deformation can enhance paring. Quadrupole-quadrupole interaction on single j-level

$$
H=-\frac{\xi}{2} Q \cdot Q
$$

- Exchange terms result in attractive pairing interaction

$$
G=\xi /(2 \Omega)
$$

- Terms scale as $1 / \Omega$ where $\Omega=2 j+1$
- Pairing is the strongest particle-particle interactions

${ }^{106}$ Sn Full Calculation and Pairing

Using pairing in treating nuclear many-body problem

- Perturbative calculations starting from pairing ${ }^{(1)}$
- Hartree-Fock plus exact pairing
- Pairing and RPA for other interactions
(1) A. Volya, B.A. Brown, V. Zelevinsky, Phys. Lett. B509 (2001) 37.

[
 Hartree-Fock +EP

Mean
field (HF)

Pairing

Other interactions

Occupation numbers

Pairing plus quadrupole model

- Hamiltonian $H=-G P^{\dagger} P-\frac{\xi}{2} Q \cdot Q$ on a single j-level
- Quadrupole creates deformed mean field

$$
\epsilon_{m}=-3 \xi m^{2}\langle Q\rangle
$$

- Particles are distributed with pairing
- Self consistent mean-field

$$
\langle Q\rangle=\sum_{m}\left[3 m^{2}-j(j+1)\right] n_{m}
$$

Features of exact solution

- Phase transition is smooth and extended.
- Pairing correlation survive in deformed state

[Hartree Fock +EP calculation: Realistic case, tin isotopes.

- We use Skyrme HF (SKX ${ }^{(1)}$)
- Pairing matrix elements from G-matrix calculations ${ }^{(2)}$

(1) B.A. Brown, Phys Rev. C 58, (1998) 220.
(2) A. Hold, et.al., Nucl. Phys. A634, (1998) 41.

Nuclear pairing and Coriolis effects in proton emitters

Motivations

Why proton emitters?
-Remarkable experimental progress

- Sensitive tool for structure physics
-Development of new theoretical tools
-Addressing old questions

Coriolis effect and attenuation problem

Questions of interest:

-Single particle motion in deformed field
-Rotation of a superfluid nucleus
-Kinematical recoil effects (Coriolis forces)

	$\Gamma_{0}\left(10^{-20} \mathrm{MeV}\right)$		$\Gamma_{2} / \Gamma_{0}(\%)$	
	Rotor	RHFB	P+Rotor	RHFB
Experiment	10.9		0.71	
Adiabatic	15.0		0.73	
Coriolis	1.4	5.9	1.8	1.2
Coriolis+pairing	1.7	7.0	1.7	0.3

Coriolis effect and HFB in non-inertial frame

Adiabatic treatment

Full Picture
-Kinematic Coupling
-Pairing Spectroscopic factors
-Recoil of a superfluid "drop"

$$
H=H_{\mathrm{rotor}}+H_{\mathrm{intr}}
$$

Rotating Hartree-Fock-Bogoliubov (RHFB) mean field

Elementary excitations $a_{\Omega}^{\dagger} a_{\Omega+1}^{\dagger} a_{\Omega}$ for $\Omega \rightarrow \Omega+1$
Find quasiparticles $\beta_{i}^{\dagger}=\sum_{\Omega}\left(u_{\Omega}^{i} a_{\Omega}^{\dagger}+v_{\Omega}^{i} a_{\Omega}\right)$
and stationary mean field $\left[\beta_{i} H\right]=\left\langle\epsilon_{i}\right\rangle \beta_{i}$
Broken symmetries: Particle number $\left\langle\Delta_{i}\right\rangle=\sum_{\Omega>0} G u_{\Omega}^{i} v_{\Omega}^{i}$
Deformation alignment, K-symmetry $\left\langle j_{+}\right\rangle \neq 0,\left\langle j_{3}^{2}\right\rangle \neq 0$

Understanding Coriolis attenuation problem

response of superfluid mean field to recoil
Traditional Coriolis term $\quad H_{c o r}=-\frac{\hbar}{2 \mathcal{L}}\left(I_{+} j_{-}+I_{-} j_{+}\right)$
RHFB MF Coriolis term $\quad H_{c o r}=-\frac{\hbar}{2 \mathcal{L}}\left[\left(I_{-}\left\langle j_{-}\right\rangle\right) j_{-}+\left(I_{+}-\left\langle j_{+}\right\rangle\right) j_{+}\right]$
Attenuation factor $\quad \xi=1-\frac{\left\langle j_{+}\right\rangle}{\left\langle I_{+}\right\rangle}$

Applications to ${ }^{141} \mathrm{Ho}$

Further steps

-Self consistent moment of inertia
-Larger valence space
-From HFB to HF+EP

*P.Ring and P.Schuck, Then nuclear many-body problem, (Springer-Verlag, Berlin Heidelberg, 2000)

Collaborators:

B.A. Brown, N.D. Dang, C. Davids, M. Horoi, D. Mulhall, T. Sumaryada, K. Tanabe, V. Zelevinsky

References:

- V. Zelevinsky, A. Volya, Nucl. Phys. A 752, (2005) 325c
- A. Volya and C. Davids, Eur. Phys. J. A, 25 (supp. 1), (2005) 161-163.
- V. Zelevinsky and A. Volya, Nucl. Phys. 731, (2004) 299-310.
- A. Volya and V. Zelevinsky, Phys. Lett. B574, (2003) 27-34.
- V. Zelevinsky and A. Volya, Phys. Part. Nucl. 66, (2003) 1829-1849.
- A. Volya, Phys. Rev. C. 65, (2002) 044311.
- A. Volya, V. Zelevinsky, B. A. Brown, Phys. Rev. C 65, (2002) 054312.
- A. Volya, B. A. Brown, and V. Zelevinsky, Prog. Theor. Phys. Supp. 146 (2002) 636.
- A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).
- A. Volya and V. Zelevinsky, Phys. Rev. C 67, (2003) 054322.

Support:

U.S. Department of Energy grants DE-FG02-92ER40750 and W-31-109-ENG-38

National Science Foundation grants PHY-0070911 and PHY-0244453

