**RIKEN Symposium 2006** 

# Low-lying positive- and negative-parity vibrational modes in <sup>34</sup>Mg region

K. Yoshida (Kyoto) M. Yamagami (RIKEN) K. Matsuyanagi (Kyoto)

# Shell inversion in neutron-rich Mg isotopes



#### Soft K=0<sup>+</sup> mode in deformed nuclei

Two-level model (Bohr and Mottelson)

$$|0\rangle = \frac{1}{\sqrt{a^{2} + b^{2}}} (a | v_{1} \overline{v_{1}} \rangle + b | v_{2} \overline{v_{2}} \rangle)$$
  
$$|0'\rangle = \frac{1}{\sqrt{a^{2} + b^{2}}} (-b | v_{1} \overline{v_{1}} \rangle + a | v_{2} \overline{v_{2}} \rangle)$$
  
$$1$$

Transition matrix element

$$\implies <0' | r^2 Y_{20} | 0 >= \frac{2ab}{a^2 + b^2} \{ < v_2 | r^2 Y_{20} | v_2 > - < v_1 | r^2 Y_{20} | v_1 > \}$$

opposite sign



• *1*3

# Soft octupole mode in largely deformed state





Soft negative parity vibrational modes (especially the octupole modes) are expected in largely deformed state.

# Approach



# HFB + Deformed QRPA

#### Ground state

Coordinate-space HFB equation

Mean-field Deformed Woods-Saxon potential Pair-field  $v_{\text{pair}}(\mathbf{r},\mathbf{r}') = V_0(1 - \frac{\rho(\mathbf{r})}{\rho_0})\delta(\mathbf{r} - \mathbf{r}')$   $V_0 = -450 \text{ MeV fm}^3$  $E_{\text{cutoff}} = 50 \text{MeV}$ 

#### Excited state

QRPA equation in the AB matrix formulation Residual interaction

p-h channel  $v_{\rm ph}(\mathbf{r},\mathbf{r}') = [t_0(1+x_oP_\sigma) + \frac{t_3}{6}(1+x_3P_\sigma)\rho(\mathbf{r})]\delta(\mathbf{r}-\mathbf{r}')$ 

p-p channel  $v_{pp}(\mathbf{r},\mathbf{r}') = V_0(1 - \frac{\rho(\mathbf{r})}{\rho_0})\delta(\mathbf{r} - \mathbf{r}')$ 

# Deformation of <sup>32</sup>Mg and <sup>34</sup>Mg



NPA709(2002)201

### Deformation dependence ~ quadrupole vib.



## Structure of positive-parity vibrations

 $\beta_2 = 0.28$ 300 isoscalar 32 [321]3/2 Mg 240  $K^{\pi} = 0^{+}$ 180 -3 120 Strength (fm<sup>4</sup>) [330]1/2 60 Energy (MeV) [202]3/2 -4 0 60 unperturbed 50 40 -5 30 20 10 [200]1/2 0



#### Pair fluctuation mode



#### Deformation dependence ~ octupole vib.



#### B(IS3)=6250 fm<sup>6</sup>, B(E3)=722 e<sup>2</sup>fm<sup>6</sup>





## Deformation dependence of low-lying modes



# Summary

✓ Normal deformed states in <sup>32</sup>Mg, <sup>34</sup>Mg
 ✓ Soft K=0<sup>+</sup> mode
 Pairing vibration
 Quadrupole pairing

✓ Gamma vibrational mode
 Coherent motion of protons and neutrons

✓ Superdeformed states in <sup>32</sup>Mg, <sup>34</sup>Mg
 ✓ Low-lying K=0<sup>-</sup>, 1<sup>-</sup> states
 Very large transition strengths
 2q.p. excitations near the Fermi level
 Excitations from deeply bound to weakly bound state

Soft octupole vibrational mode good indicator of large deformation of n-rich Mg isotopes

## Grand state property

# <sup>32</sup>Mg

|                               | 0.1   | 0.2   | 0.28  | 0.4   | 0.5   | 0.6   |
|-------------------------------|-------|-------|-------|-------|-------|-------|
| $\Delta_n$                    | 1.15  | 1.50  | 1.64  | 1.63  | 1.55  | 1.48  |
| $\Delta_{p}$                  | 0.65  | 0.11  | 0.0   | 0.0   | 0.0   | 0.0   |
| $\lambda$ n                   | -4.06 | -4.09 | -4.17 | -4.31 | -4.31 | -4.21 |
| $\lambda_{	extsf{p}}$         | -17.6 | -17.4 | -17.0 | -17.0 | -17.5 | 17.0  |
| $\sqrt{\langle r^2  angle_n}$ | 3.44  | 3.47  | 3.50  | 3.56  | 3.61  | 3.66  |
| $\sqrt{\langle r^2  angle_p}$ | 2.99  | 3.01  | 3.03  | 3.07  | 3.11  | 3.15  |